中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 834-845 DOI: 10.7536/PC131014 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Fabrication and Application of Photoelectrochemical Sensor

Sun Bing, Ai Shiyun*   

  1. College of Chemistry and Materials Science, Shandong Agricultural University, Taian 271018, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21375079, 21105056)

PDF ( 3365 ) Cited
Export

EndNote

Ris

BibTeX

Photoelectrochemical sensor is a dynamically developed and promising analytical method, based on the photoelectrochemical process and chemical or biological probing recognition. Benefitting from the separation of the excitation source (light) and electrochemical detection signal (photocurrent), the photoelectrochemical sensor possesses many intrinsic advantages, such as higher sensitivity with low background signals, simpler and low-cost instruments, and inherent miniaturization. It has received an increasing attention and shows an extensive application potential in rapid and high-throughput biological and chemical assays. Under light irradiation, the photocurrent is recorded on the basis of the electron transfer among the photoelectrochemical materials in excited state, electrode surface, and electrolyte. Depending on the photocurrent change resulting from the interactions between various sensing elements and their target analytes, the quantitative photocurrent-analyte relationship is obtained. There are two key portions in the development of photoelectrochemical sensor: the fabrication of the photosensitive layer and the assembly of the molecular recognition layer at the transducer surface. The design and fabrication of photosensitizer, deriving from photoelectrochemically active species and the exploitation of exquisite sensing mechanisms are of extreme importance in the achievements of acceptable sensitivity. In this paper, the sensing principle of photoelectrochemical sensor, lasted applications, design and fabrication of photosensitizer and developments of sensing strategies are reviewed.

Contents
1 Photoelectrochemistry and photoelectrochemical process
2 Introduction to photoelectrochemical sensor
3 Photoelectrochemically active species for the design and fabrication of photoelectrochemical sensor
3.1 Organic photovoltaic molecule
3.2 Conducting polymer
3.3 Inorganic semiconductor and its composites
3.4 Other photovoltaic materials
4 Signal generating mechanism and sensing strategies
4.1 Direct charge transmission and redox reaction
4.2 Signal-off strategy derived from steric hindrance based on molecular recognition
4.3 Enzymatic inhibition and enzymatic catalysis
4.4 Local surface plasma resonance (LSPR) of noble metal nanoparticles and energy transfer in exciton-plasmon interaction (EPI)
4.5 Other probing strategies
5 Prospective of photoelectrochemical sensor

CLC Number: 

[1] Becquerel A E. C. R. Acad. Sci.,1839, 9: 145.
[2] Brattain W, Garrett C. Bell Syst. Tech. J., 1955, 34: 129.
[3] Dewald J. J. Phys. Chem. Solids, 1960, 14: 155.
[4] Gerischer H. J. Electrochem. Soc., 1966, 113: 1174.
[5] Kolb D, Przasnyski M, Gerischer H. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54: 25.
[6] Fujishima A, Honda K. Nature,1972, 238: 37.
[7] Gratzel M. Nature, 2001, 414: 338.
[8] Zhang X, Guo Y, Liu M, Zhang S. RSC Adv., 2013, 3: 2846.
[9] Ham M H, Choi J H, Boghossian A A, Jeng E S, Graff R A, Heller D A, Chang A C, Mattis A, Bayburt T H, Grinkova Y V, Zeiger A S, Van Vliet K J, Hobbie E K, Sligar S G, Wraight C A, Strano M S. Nat. Chem., 2010, 2: 929.
[10] 张兆霞(Zhang Z X), 赵常志(Zhao C Z). 分析化学(Chin. J. Anal. Chem.), 2013, 41: 436.
[11] Tan M X, Laibinis P E, Nguyen S T, Kesselman J M, Stanton C E, Lewis N S. Prog. Inorg. Chem., 1994, 41: 21.
[12] 柳闽生(Liu M S), 杨迈之(Yang M Z). 化学通报(Chemistry), 1997, 20.
[13] Lin Y, Yuan G, Liu R, Zhou S, Sheehan S W, Wang D. Chem. Phys. Lett., 2011, 507: 209.
[14] Cohen C B, Weber S G. Anal. Chem., 1993, 65: 169.
[15] Licht S. Colloids Surf. A, 1998, 134: 231.
[16] 门洪(Men H), 胡德建(Hu D J), 穆胜伟(Mu S W), 靳继勇(Jin J Y), 王伟广(Wang W G). 传感器与微系统 (Transducer and Microsystem Technologies), 2008, 27: 12.
[17] 彭芳(Peng F), 朱德荣(Zhu D R), 司士辉(Si S H), 肖辉(Xiao H). 化学进展(Progress in Chemistry), 2008, 20: 586.
[18] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[19] 王光丽(Wang G L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 中国科学: 化学(Scientia Sinica Chimica), 2009, 39: 1336.
[20] Sun B, Zhang K, Chen L, Guo L, Ai S. Biosens. Bioelectron., 2013, 44: 48.
[21] Wang G L, Xu J J, Chen H Y. Biosens. Bioelectron., 2009, 24: 2494.
[22] Wang K, Wu J, Liu Q, Jin Y, Yan J, Cai J. Anal. Chim. Acta, 2012, 745: 131.
[23] Zhao X, Zhou S, Shen Q, Jiang L P, Zhu J J. Analyst, 2012, 137: 3697.
[24] Tang J, Kong B, Wang Y, Xu M, Wang Y, Wu H, Zheng G. Nano Lett., 2013, 13: 5350.
[25] Wang G L, Xu J J, Chen H Y, Fu S Z. Biosens. Bioelectron., 2009, 25: 791.
[26] An Y, Tang L, Jiang X, Chen H, Yang M, Jin L, Zhang S, Wang C, Zhang W. Chem. Eur. J., 2010, 16: 14439.
[27] Li Q W, Luo G A, Feng J, Cai D W, Ouyang Q. Analyst, 2000, 125: 1908.
[28] Willner I, Patolsky F, Wasserman J. Angew. Chem. Int. Ed., 2001, 40: 1861.
[29] Gao Z, Tansil N C. Nucleic Acids Res., 2005, 33: e123.
[30] Lu W, Jin Y, Wang G, Chen D, Li J. Biosens. Bioelectron., 2008, 23: 1534.
[31] Zhang X, Xu Y, Zhao Y, Song W. Biosens. Bioelectron., 2013, 39: 338.
[32] Wu Y, Zhang B, Guo L H. Anal. Chem., 2013, 85: 6908.
[33] Zhu Y, Cao H, Tang L, Yang X, Li C. Electrochim. Acta, 2009, 54: 2823.
[34] Chen D, Zhang H, Li X, Li J. Anal. Chem., 2010, 82: 2253.
[35] Du J, Yu X, Wu Y, Di J. Mater. Sci. Eng. C, 2013, 33: 2031.
[36] Haddour N, Chauvin J, Gondran C, Cosnier S. J. Am. Chem. Soc., 2006, 128: 9693.
[37] Yao W J, Le Goff A, Spinelli N, Holzinger M, Diao G W, Shan D, Defrancq E, Cosnier S. Biosens. Bioelectron., 2013, 42: 556.
[38] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 5253.
[39] Qian Z, Bai H J, Wang G L, Xu J J, Chen H Y. Biosens. Bioelectron., 2010, 25: 2045.
[40] Zhao W W, Zhang L, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 9456.
[41] Zhao X, Zhou S, Jiang L P, Hou W, Shen Q, Zhu J J. Chem. Eur. J., 2012, 18: 4974.
[42] Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X. Biosens. Bioelectron., 2014, 51: 413.
[43] Zen J M, Song Y S, Chung H H, Hsu C T, Senthil Kumar A. Anal. Chem., 2002, 74: 6126.
[44] Wang C, Wu J, Wang P, Ao Y, Hou J, Qian J. Anal. Chim. Acta, 2013, 767: 141.
[45] Zhang S, Li L, Zhao H. Environ. Sci. Technol., 2009, 43: 7810.
[46] Mu Q, Li Y, Wang H, Zhang Q. CrystEngComm, 2011, 13: 6258.
[47] Kang Q, Yang L, Chen Y, Luo S, Wen L, Cai Q, Yao S. Anal. Chem., 2010, 82: 9749.
[48] Zhou Q, Zhang S, Yang X, Wu Q, Zhao H, Wu M. Sens. Actuators B, 2013, 186: 132.
[49] Han D M, Ma Z Y, Zhao W W, Xu J J, Chen H Y. Electrochem. Commun., 2013, 35: 38.
[50] Chamier J, Leaner J, Crouch A M. Anal. Chim. Acta, 2010, 661: 91.
[51] Li H, Li J, Wang W, Yang Z, Xu Q, Hu X. Analyst, 2013, 138: 1167.
[52] Li H, Li J, Yang Z, Xu Q, Hu X. Anal. Chem., 2011, 83: 5290.
[53] Sun B, Chen L, Xu Y, Liu M, Yin H, Ai S. Biosens. Bioelectron., 2013, 51: 164.
[54] Gill R, Zayats M, Willner I. Angew. Chem. Int. Ed., 2008, 47: 7602.
[55] Wang G, Xu J, Chen H. Science China: Chemistry, 2009, 52: 1789.
[56] Weber S G, Morgan D M, Elbicki J M. Clin. Chem., 1983, 29: 1665.
[57] Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2004, 76: 499.
[58] Gao Z, Tansil N C. Nucleic Acids Res., 2005, 33: e123.
[59] Raymond J E, Bhaskar A, Goodson T, Makiuchi N, Ogawa K, Kobuke Y. J. Am. Chem. Soc., 2008, 130: 17212.
[60] Wang W, Shan D, Yang Y, Wang C, Hu Y, Lu X. Chem. Commun., 2011, 47: 6975.
[61] Ikeda A, Nakasu M, Ogasawara S, Nakanishi H, Nakamura M, Kikuchi J. Org. Lett., 2009, 11: 1163.
[62] Yamada H, Tanabe K, Nishimoto S. Org. Biomol. Chem., 2008, 6: 272.
[63] Pandey P C, Weetall H H. Anal. Chem., 1994, 66: 1236.
[64] Hu Y, Xue Z, He H, Ai R, Liu X, Lu X. Biosens. Bioelectron., 2013, 47: 45.
[65] Tran T T, Li J, Feng H, Cai J, Yuan L, Wang N, Cai Q. Sens. Actuators B, 2013, 190: 745.
[66] Shankar K, Basham J I, Allam N K, Varghese O K, Mor G K, Feng X, Paulose M, Seabold J A, Choi K S, Grimes C A. J. Phys. Chem. C, 2009, 113: 6327.
[67] Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Nano Lett., 2010, 11: 203.
[68] Tu W, Dong Y, Lei J, Ju H. Anal. Chem., 2010, 82: 8711.
[69] Cai J, Sheng P, Zhou L, Shi L, Wang N, Cai Q. Biosens. Bioelectron., 2013, 50: 66.
[70] Li H, Li J, Xu Q, Hu X. Anal. Chem., 2011, 83: 9681.
[71] Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C. ACS Appl. Mater. Interfaces, 2013, 5: 6201.
[72] Li X, Hu C, Zhao Z, Zhang K, Liu H. Sens. Actuators B, 2013, 182: 461.
[73] Yue Z, Lisdat F, Parak W J, Hickey S G, Tu L, Sabir N, Dorfs D, Bigall N C. ACS Appl. Mater. Interfaces, 2013, 5: 2800.
[74] Sheeney-Haj-Ichia L, Basnar B, Willner I. Angew. Chem. Int. Ed., 2005, 44: 78.
[75] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak J, Geim A. Phys. Rev. Lett., 2008, 100: 016602.
[76] Wei L, Tezuka N, Umeyama T, Imahori H, Chen Y. Nanoscale, 2011, 3: 1845.
[77] 王娟(Wang J), 刘颖(Liu Y), 张伟德(Zhang W D). 化学进展(Progress in Chemistry), 2011, 23: 1583.
[78] Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, Wu X. Anal. Chim. Acta, 2011, 695: 84.
[79] Zhao X, Zhou S, Shen Q, Jiang L P, Zhu J J. Analyst, 2012, 137: 3697.
[80] Li Y J, Ma M J,Yin G, Kong Y, Zhu J J. Chem. Eur. J., 2013, 19: 4496.
[81] Yan J, Wang K, Liu Q, Qian J, Dong X, Liu W, Qiu B. RSC Adv., 2013, 3: 14451.
[82] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar Zadeh K. Adv. Funct. Mater., 2011, 21: 2175.
[83] Luo J, Hepel M. Electrochim. Acta, 2001, 46: 2913.
[84] Zhang X, Li L, Peng X, Chen R, Huo K, Chu P K. Electrochim. Acta, 2013, 108: 491.
[85] Peter L M, Wijayantha K G U, Riley D J, Waggett J P. J. Phys. Chem. B, 2003, 107: 8378.
[86] 王艳(Wang Y), 黄剑锋(Huang J F), 曹丽云(Cao L Y), 吴建鹏(Wu J P), 贺海燕(He H Y). 陶瓷(Ceramics), 2010, 19.
[87] Yin H, Sun B, Zhou Y, Wang M, Xu Z, Fu Z, Ai S. Biosens. Bioelectron., 2013, 51: 103.
[88] Zhou Y, Xu Z, Wang M, Sun B, Yin H, Ai S. Biosens. Bioelectron., 2014, 53: 263.
[89] Wang M, Yin H, Shen N, Xu Z, Sun B, Ai S. Biosens. Bioelectron., 2014, 53: 232.
[90] Hu C, Zheng J, Su X, Wang J, Wu W, Hu S. Anal. Chem., 2013, 85:10612.
[91] Xu L, Xia J, Xu H, Qian J, Yan J, Wang L, Wang K, Li H. Analyst, 2013, 138: 6721.
[92] Lu Y, Xu J, Liu B, Kong J. Biosens. Bioelectron., 2007, 22: 1173.
[93] Cooper J A, Woodhouse K E, Chippindale A M, Compton R G. Electroanalysis, 1999, 11: 1259.
[94] Tu W, Lei J, Wang P, Ju H. Chem. Eur. J., 2011, 17: 9440.
[95] Hao Q, Wang P, Ma X, Su M, Lei J, Ju H. Electrochem. Commun., 2012, 21: 39.
[96] Li H, Li J, Xu Q, Yang Z, Hu X. Anal. Chim. Acta, 2013, 766: 47.
[97] Cooper J A, Wu M, Compton R G. Anal. Chem., 1998, 70: 2922.
[98] Haddour N, Cosnier S, Gondran C. Chem. Commun., 2004, 2472.
[99] Wang G L, Yu P P, Xu J J, Chen H Y. J. Phys. Chem. C, 2009, 113: 11142.
[100] Zhang X, Li S, Jin X, Li X. Biosens. Bioelectron., 2011, 26: 3674.
[101] Zhang X, Li S, Jin X, Zhang S. Chem. Commun., 2011, 47: 4929.
[102] Zhao X, Zhou S, Jiang L P, Hou W, Shen Q, Zhu J J. Chem. Eur. J., 2012, 18: 4974.
[103] Pardo-Yissar V, Katz E, Wasserman J, Willner I. J. Am. Chem. Soc., 2002, 125: 622.
[104] Zhu W, An Y R, Luo X M, Wang F, Zheng J H, Tang L L, Wang Q J, Zhang Z H, Zhang W, Jin L T. Chem. Commun., 2009: 2682.
[105] Huang Q, Chen H, Xu L, Lu D, Tang L, Jin L, Xu Z, Zhang W. Biosens. Bioelectron., 2013, 45: 292.
[106] Gong J, Wang X, Li X, Wang K. Biosens. Bioelectron., 2012, 38: 43.
[107] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13: 495.
[108] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 917.
[109] Kang Q, Chen Y, Li C, Cai Q, Yao S, Grimes C A. Chem. Commun., 2011, 47: 12509.
[110] Li Y J, Ma M J, Zhu J J. Anal. Chem., 2012, 84: 10492.
[111] Wang W, Bao L, Lei J, Tu W, Ju H. Anal. Chim. Acta, 2012, 744: 33.
[112] Zhao W W, Ma Z Y, Yan D Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 10518.
[113] Zhao W W, Ma Z Y, Xu J J, Chen H Y. Anal. Chem., 2013, 85: 8503.
[114] Riedel M, Gobel G, Abdelmonem A M, Parak W J, Lisdat F. ChemPhysChem, 2013, 14: 2338.
[115] Li H, Hao W, Hu J, Wu H. Biosens. Bioelectron., 2013, 47: 225.
[116] Khalid W, El Helou M, Murböck T, Yue Z, Montenegro J M, Schubert K, Göbel G, Lisdat F, Witte G, Parak W J. ACS Nano, 2011, 5: 9870.
[117] Yue Z, Zhang W, Wang C, Liu G, Niu W. Mater. Lett., 2012, 74: 180.
[118] Yildiz H B, Freeman R, Gill R, Willner I. Anal. Chem., 2008, 80: 2811.
[119] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107: 668.
[120] Ghosh S K, Pal T. Chem. Rev., 2007, 107: 4797.
[121] Wu X, Thrall E S, Liu H, Steigerwald M, Brus L. J. Phys. Chem. C, 2010, 114: 12896.
[122] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 895.
[123] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47: 10990.
[124] Zhao W W, Yu P P, Shan Y, Wang J, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 5892.
[125] Shchukin D G, Sviridov D V, Kulak A I. Sens. Actuators B, 2001, 76: 556.
[126] Wang G L, Xu J J, Chen H Y. Nanoscale, 2010, 2: 1112.
[127] Shen Q, Zhao X, Zhou S, Hou W, Zhu J J. J. Phys. Chem. C, 2011, 115: 17958.
[128] Wang P, Ma X, Su M, Hao Q, Lei J, Ju H. Chem. Commun., 2012, 48: 10216.
[129] Liang Y, Kong B, Zhu A, Wang Z, Tian Y. Chem. Commun., 2012, 48: 245.
[130] Li H, Tian Y, Deng Z, Liang Y. Analyst, 2012, 137: 4605.
[131] Shi H, Zhao G, Liu M, Zhu Z. Electrochem. Commun., 2011, 13: 1404.
[132] Chen K, Liu M, Zhao G, Shi H, Fan L, Zhao S. Environ. Sci. Technol., 2012, 46: 11955.
[133] Lu B, Liu M, Shi H, Huang X, Zhao G. Electroanalysis, 2013, 25: 771.
[134] Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. Analyst, 2013, 138: 939.
[135] Wang P, Ge L, Li M, Li W, Li L, Wang Y, Yu J. J. Inorg. Organomet. Polym. Mater., 2013, 23: 703.
[136] Liu S, Li C, Cheng J, Zhou Y. Anal. Chem., 2006, 78: 4722.
[137] Liang M, Guo L H. Environ. Sci. Technol., 2007, 41: 658.
[138] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[139] Jia S, Liang M, Guo L H. J. Phys. Chem. B, 2008, 112: 4461.
[140] Liu Y, Jia S, Guo L H. Sens. Actuators B, 2012, 161: 334.
[141] Zhang B, Guo L H. Biosens. Bioelectron., 2012, 37: 112.
[142] Zhang B, Guo L H, Greenberg M M. Anal. Chem., 2012, 84: 6048.
[143] Ding C, Li H, Li X, Zhang S. Chem. Commun., 2010, 46: 7990.
[144] Golub E, Niazov A, Freeman R, Zatsepin M, Willner I. J. Phys. Chem. C, 2012, 116: 13827.
[145] Zhang X, Zhao Y, Li S, Zhang S. Chem. Commun., 2010, 46: 9173.
[146] Zhang X, Xu Y, Yang Y, Jin X, Ye S, Zhang S, Jiang L. Chem. Eur. J., 2012, 18: 16411.
[147] Zhang Y, Cao T, Huang X, Liu M, Shi H, Zhao G. Electroanalysis, 2013, 25: 1787.
[148] Dilgin Y, Dilgin D G, Dursun Z, Gökçel H, Gligor D, Bayrak B, Ertek B. Electrochim. Acta, 2011, 56: 1138.
[149] Wang Y, Zang D, Ge S, Ge L, Yu J, Yan M. Electrochim. Acta, 2013, 107: 147.
[150] Wang P, Ge L, Ge S, Yu J, Yan M, Huang J. Chem. Commun., 2013, 49: 3294.
[151] Wang Y, Ge L, Wang P, Yan M, Ge S, Li N, Yu J, Huang J. Lab Chip, 2013, 13: 3945.
[152] Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J. Anal. Chem., 2013, 85: 3961. M. Anal. Chem., 2012, 84:6048.
[143] Ding C, Li H, Li X, Zhang S. Chem. Commun., 2010, 46:7990.
[144] Golub E, Niazov A, Freeman R, Zatsepin M, Willner I. J. Phys. Chem. C, 2012, 116:13827.
[145] Zhang X, Zhao Y, Li S, Zhang S. Chem. Commun., 2010, 46:9173.
[146] Zhang X, Xu Y, Yang Y, Jin X, Ye S, Zhang S, Jiang L. Chem. Eur. J., 2012, 18:16411.
[147] Zhang Y, Cao T, Huang X, Liu M, Shi H, Zhao G. Electroanalysis, 2013, 25:1787.
[148] Dilgin Y, Dilgin D G, Dursun Z, Gökçel H ?, Gligor D, Bayrak B, Ertek B. Electrochim. Acta, 2011, 56:1138.
[149] Wang Y, Zang D, Ge S, Ge L, Yu J, Yan M. Electrochim. Acta, 2013, 107:147.
[150] Wang P, Ge L, Ge S, Yu J, Yan M, Huang J. Chem. Commun., 2013, 49:3294.
[151] Wang Y, Ge L, Wang P, Yan M, Ge S, Li N, Yu J, Huang J. Lab Chip, 2013, 13:3945.
[152] Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J. Anal. Chem., 2013, 85:3961.

 

[1] Xiaoyan Wei, Gang Wang*, Anfeng Li, Yizhou Quan, Jinwei Chen, Ruilin Wang*. Application of Electrochemical Quartz Crystal Microbalance [J]. Progress in Chemistry, 2018, 30(11): 1701-1721.
[2] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[3] Chenxi Liang, Lixin Cao*, Yuejuan Zhang, Peisheng Yan. Electrochemical Biosensors for Marine Toxins Analysis [J]. Progress in Chemistry, 2018, 30(7): 1028-1034.
[4] Yanqun Shan, Xiaoying Wang*. Electrochemical Aptasensor for Detection of Ochratoxin A [J]. Progress in Chemistry, 2018, 30(6): 797-808.
[5] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[6] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[7] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[8] Xing Liwen, Ma Zhanfang. Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid [J]. Progress in Chemistry, 2016, 28(11): 1705-1711.
[9] Yang Yukun, Wang Xiaomin, Fang Guozhen, Yun Yaguang, Guo Ting, Wang Shuo. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique [J]. Progress in Chemistry, 2016, 28(9): 1351-1362.
[10] He Huichao, Sean P. Berglund, Buddie Mullins, Zhou Yong, Ke Gaili, Dong Faqin. Scanning Electrochemical Microscopy for Photoelectrochemical Energy Research [J]. Progress in Chemistry, 2016, 28(6): 908-916.
[11] Rao Honghong, Xue Zhonghua, Wang Xuemei, Zhao Guohu, Hou Huihui, Wang Hui. Electrochemical Sensors Based on Electrochemically Reduced Graphene Oxide [J]. Progress in Chemistry, 2016, 28(2/3): 337-352.
[12] Li Minrui, Guo Yongliang, Yang Baoping, Guo Junhong, Cui Jinfeng. Electrochemical Analyses of Anion Recognition Based on Urea Derivatives [J]. Progress in Chemistry, 2015, 27(5): 559-570.
[13] Fang Li, He Jinlu. Nonenzymatic Glucose Sensors [J]. Progress in Chemistry, 2015, 27(5): 585-593.
[14] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[15] Yang Yin, Fan Mengxing, Guo Zhihui, Zhang Hui, Wu Ping, Cai Chenxin. Electrochemical Analysis for DNA Methylation [J]. Progress in Chemistry, 2014, 26(12): 1977-1986.