中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 424-435 DOI: 10.7536/PC130832 Previous Articles   Next Articles

• Review •

Synthesis of Core-Shell Metal-Organic Frameworks

Song Xiaokai*1, Zhou Yajing1, Li Liang*2   

  1. 1. Changzhou Entry-Exit Inspection and Quarantine Bureau, Changzhou 213003, China;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the Funding Scheme for Training Young Teachers in Shanghai Colleges (No.ZZyyy12006) and the Talented Faculty Funds of Shanghai Institute of Technology (No.YJ-2012-10)

PDF ( 4567 ) Cited
Export

EndNote

Ris

BibTeX

Core-shell metal-organic frameworks (MOFs) composed of MOFs as core (or shell) and another material, such as MOFs, carbon, inorganic compounds and organic polymers, as shell (or core), are a typical class of multifunctional MOFs composites. Because of the combination of the properties of core and shell materials, core-shell MOFs have better performances, such as increasing framework stability, selective separation and gas sorption, than the core or shell materials. Therefore, core-shell MOFs have high potentials for industrial applications. In this paper, the research progress of core-shell MOFs in recent years is reviewed. Synthesis methods and applications of variously structural core-shell MOFs, such as MOF@MOF, MOF@carbon, metal oxide@MOF, and polymer@MOF are introduced. Besides, the future development of core-shell MOFs is prospected.

Contents
1 Introduction
2 Synthesis methods and applications of variously structural core-shell MOFs
2.1 MOF@MOF
2.2 Core-shell structures of MOFs with carbon
2.3 Core-shell structures of MOFs with inorganic compounds
2.4 Core-shell structures of MOFs with organic polymers
3 Conclusion and outlook

CLC Number: 

[1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.
[2] Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782.
[3] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38: 1294.
[4] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2012, 112: 724.
[5] Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, De Weireld G, Vimont A, Daturi M, Chang J S. Chem. Soc. Rev., 2011, 40: 550.
[6] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.
[7] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[9] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[10] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232.
[11] Della Rocca J, Liu D, Lin W. Acc. Chem. Res., 2011, 44: 957.
[12] deKrafft K E, Xie Z, Cao G, Tran S, Ma L, Zhou O Z, Lin W. Angew. Chem. Int. Ed., 2009, 48: 9901.
[13] Liu D, Huxford R C, Lin W. Angew. Chem. Int. Ed., 2011, 50: 3696.
[14] Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112: 1105.
[15] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133: 4172.
[16] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353.
[17] Shen L, Yang S W, Xiang S, Liu T, Zhao B, Ng M-F, Göettlicher J, Yi J, Li S, Wang L, Ding J, Chen B, Wei S-H, Feng Y P, J. Am. Chem. Soc., 2012, 134: 17286.
[18] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.
[19] Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. Nat. Chem., 2010, 2: 944.
[20] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazaydn A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134: 15016.
[21] Farha O K, Wilmer C E, Eryazici I, Hauser B G, Parilla P A, O'Neill K, Sarjeant A A, Nguyen S T, Snurr R Q, Hupp J T. J. Am. Chem. Soc., 2012, 134: 9860.
[22] Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018.
[23] An J, Farha O K, Hupp J T, Pohl E, Yeh J I, Rosi N L. Nat. Commun., 2012, 3: 604.
[24] Song X, Oh M, Lah M S. Inorg. Chem., 2013, 52: 10869.
[25] Feldblyum J I, Liu M, Gidley D W, Matzger A J. J. Am. Chem. Soc., 2011, 133: 18257.
[26] Song X, Zou Y, Liu X, Oh M, Lah M S. New J. Chem., 2010, 34: 2396.
[27] Park K S, Ni Z, Cté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Nat. Acad. Sci. U. S. A., 2006, 103: 10186.
[28] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040.
[29] Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, Kondo M, Haruki R, Tanaka D, Sakamoto K, Shimomura S, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2009, 48: 1766.
[30] Furukawa S, Hirai K, Takashima Y, Nakagawa K, Kondo M, Tsuruoka T, Sakata O, Kitagawa S. Chem. Commun., 2009, 5097.
[31] Hirai K, Furukawa S, Kondo M, Uehara H, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50: 8057.
[32] Koh K, Wong-Foy A G, Matzger A J. Chem. Commun., 2009, 6162.
[33] Park T H, Hickman A J, Koh K, Martin S, Wong-Foy A G, Sanford M S, Matzger A J. J. Am. Chem. Soc., 2011, 133: 20138.
[34] Yoo Y, Jeong H K. Cryst. Growth Des., 2010, 10: 1283.
[35] Shekhah O, Hirai K, Wang H, Uehara H, Kondo M, Dinng S, Zacher D, Fischer R A, Sakata O, Kitagawa S, Furukawa S, Wöll C. Dalton Trans., 2011, 40: 4954.
[36] Lee H J, Cho Y J, Cho W, Oh M. ACS Nano, 2013, 7: 491.
[37] Li T, Sullivan J E, Rosi N L. J. Am. Chem. Soc., 2013, 135: 9984.
[38] Cohen S M. Chem. Rev., 2012, 112: 970.
[39] Gadzikwa T, Lu G, Stern C L, Wilson S R, Hupp J T, Nguyen S T. Chem. Commun., 2008, 5493.
[40] Gadzikwa T, Farha O K, Malliakas C D, Kanatzidis M G, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 13613.
[41] Hirai K, Furukawa S, Kondo M, Meilikhov M, Sakata Y, Sakatad O, Kitagawa S. Chem. Commun., 2012, 48: 6472.
[42] Burnett B J, Barron P M, Hu C, Choe W. J. Am. Chem. Soc., 2011, 133: 9984.
[43] Jeong S, Kim D, Song X, Choi M, Park N, Lah M S. Chem. Mater., 2013, 25: 1047.
[44] Kondo M, Furukawa S, Hirai K, Kitagawa S. Angew. Chem. Int. Ed., 2010, 49: 5327.
[45] Das S, Kim H, Kim K. J. Am. Chem. Soc., 2009, 131: 3814.
[46] Zhang Z, Zhang L, Wojtas L, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 924.
[47] Dinca M, Long J R. J. Am. Chem. Soc., 2007, 129: 11172.
[48] Song X, Kim T K, Kim H, Kim D, Jeong S, Moon H R, Lah M S. Chem. Mater., 2012, 24: 3065.
[49] Song X, Jeong S, Kim D, Lah M S. CrystEngComm, 2012, 14: 5753.
[50] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176.
[51] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[52] Hu M, Reboul J, Furukawa S, Torad N L, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134: 2864.
[53] Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.
[54] Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24: 464.
[55] Yang S J, Park C R. Adv. Mater., 2012, 24: 4010.
[56] Jahan M, Bao Q, Yang J X, Loh K P. J. Am. Chem. Soc., 2010, 132: 14487.
[57] Yang S J, Choi J Y, Chae H K, Cho J H, Nahm K S, Park C R. Chem. Mater., 2009, 21: 1893.
[58] Li Y, Yang R T. J. Am. Chem. Soc., 2006, 128: 8136.
[59] Yang S J, Cho J H, Nahm K S, Park C R. Int. J. Hydrogen Energy, 2010, 35: 13062.
[60] Xiang Z, Peng X, Cheng X, Li X, Cao D. J. Phys. Chem. C, 2011, 115: 19864.
[61] Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W. Angew. Chem. Int. Ed., 2011, 50: 491.
[62] Prasanth K P, Rallapalli P, Raj Mj C, Bajaj H C, Jasra R V. Int. J. Hydrogen Energy, 2011, 36: 7594.
[63] Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmannc T, Kaskel S. Chem. Commun., 2011, 47: 3075.
[64] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21: 3843.
[65] Ke F, Qiu L G, Yuan Y P, Jiang X, Zhu J F. J. Mater. Chem., 2012, 22: 9497.
[66] Kuo C H, Tang Y, Chou L Y, Sneed B T, Brodsky C N, Zhao Z, Tsung C K. J. Am. Chem. Soc., 2012, 134: 14345.
[67] Zhan W W, Kuang Q, Zhou J Z, Kong X J, Xie Z X, Zheng L S. J. Am. Chem. Soc., 2013, 135: 1926.
[68] Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Chem. Commun., 2013, 49: 7884.
[69] Gao C, Zhang Q, Lu Z, Yin Y. J. Am. Chem. Soc., 2013, 135: 19706.
[70] Moon H R, Lim D W, Suh M P. Chem. Soc. Rev., 2013, 42: 1807.
[71] He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z. Angew. Chem. Int. Ed., 2013, 52: 3741.
[72] Khaletskaya K, Reboul J, Meilikhov M, Nakahama M, Diring S, Tsujimoto Mo, Isoda S, Kim F, Kamei K, Fischer R A, Kitagawa S, Furukawa S. J. Am. Chem. Soc., 2013, 135: 10998.
[73] Lu G, Li S, Guo Z, Farha O K, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene J S, Zhang H, Zhang Q, Chen X, Ma J, Loo S C J, Wei W D, Yang Y, Hupp J T. Nat. Chem., 2012, 4: 310.
[74] Taylor K M L, Rocca J D, Xie Z, Tran S, Lin W. J. Am. Chem. Soc., 2009, 131: 14261.
[75] Jo C, Lee H J, Oh M. Adv. Mater., 2011, 23: 1716.
[76] Qian K, Fang G, Wang S. Chem. Commun., 2011, 47: 10118.
[77] Lee H J, Cho W, Oh M. Chem. Commun., 2012, 48: 221.

[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[6] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[10] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[11] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[12] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[13] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[14] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[15] Zhaoying Pan, Jianzhong Ma, Wenbo Zhang, Linfeng Wei. Flexible Conductive Polymer Composites in Strain Sensors* [J]. Progress in Chemistry, 2020, 32(10): 1592-1607.