中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 270-276 DOI: 10.7536/PC130659 Previous Articles   Next Articles

• Review •

Synthesis and Applications of Graphene-Quantum Dot Composites

Niu Jingjing1,2, Gao Hui*1, Tian Wanfa1   

  1. 1. Functional and Environment Materials Research Institute, College of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
    2. Nanostructure and Low Dimensional Physics Laboratory, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Fundamental Research Funds for the Central Universities (No.lzujbky-2013-186) and the Natural Science Foundation of Gansu Province(No.1208RJYA005)

PDF ( 2310 ) Cited
Export

EndNote

Ris

BibTeX

Due to its unique physical and chemical properties and promising widespread application value, graphene has been attracting intensive research interest. However, it has been limited the applications in the field of optoelectronics due to its special structure of zero bandgap. Semiconductor quantum dots (QDs) exhibit the fascinating optical properties associated with its special quantum size effect. They have been successfully applied in biological detection and optoelectronic applications. But the recombination and annihilation between the electrons and the holes greatly restrict the QDs application in optoelectronic conversion because it lowers the electron conductivity and mobility. The special electronic properties and structures of graphene make it an excellent conductive scaffolds, which would capture and transport electrons from the excited QDs and also effectively separate the electron-hole pair. Therefore, graphene-QDs composites would be an good candidate for combining the advantages of two materials. Graphene-QDs composites not only inherit the high speed electron transport property of the intrinsic graphene, but also possess the quantum size effect and edge effect origining from the special structure of QDs, suggesting the potential applications in the fields of nanodevices and optoelectronics. In this paper, we summerized the synthetic methods of graphene-QDs composites, including the phase-transfer methods, electrostatic compound strategies, hydrothermal and solvothermal methods, electrochemical template method and the microwave-assisted ways. The brief introduction of the applications has also been presented, which would provide the reference for the research and development of graphene-based nanocomposites.

Contents
1 Introduction
2 Synthesis of graphene-quantum dot composites
2.1 Phase-transfer methods
2.2 Electrostatic compound strategies
2.3 Solvothermal methods
2.4 Hydrothermal methods
2.5 Electrochemical template method
2.6 Microwave-assisted ways
3 Applications of graphene-quantum dot composites
3.1 The applications in optoelectronic devices of graphene-quantum dot composites
3.2 The applications in photocatalysis of graphene-quantum dot composites
3.3 The applications in biosensing of graphene-quantum dot composites
4 Conclusion and outlook

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[2] Shioyama H, Akita T. Carbon, 2003, 41(1): 179.
[3] Viculis L M, Mack J J, Kaner R B. Science, 2003, 299 (5611): 1361.
[4] 李旭 (Li X), 赵卫峰 (Zhao W F), 陈国华 (Chen G H). 材料导报 (Materials Review), 2008, 22(8): 48.
[5] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146 (9/10): 351.
[6] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320 (5881): 1308.
[7] Eda G, Fanchini G, Chhowalla M. Nat. Nanotechnol., 2008, 3(5): 270.
[8] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3): 902.
[9] Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385.
[10] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H J. Phys. Rev. Lett., 2008, 100(20): 206803.
[11] Blake P, Brimicombe PD, Nair R R. Nano Letters, 2008, 8 (6): 1704.
[12] Schedin F, Geim A K, Morozov S V, Hill E W, Katsnelson M I, Novoselov K S. Nature Materials, 2007, 6(9): 652.
[13] Stoller M D, Park S J, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10): 3498.
[14] Wang X, Zhi L, Mullen K. Nano Lett., 2008, 8 (1): 323.
[15] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S. Adv. Mater., 2008, 20: 3924.
[16] Bruchez M J, Moronne M, Gin P, Weiss S, Weiss A P. Science, 1998, 281 (5385): 2013.
[17] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295(5564): 2425.
[18] Morgan N Y, Leatherdale C A, Drndic M, Vitasov M, Kastner M C, Bawendi M. Phys. Rev. B, 2002, 66: 075331.
[19] Jarosz M V, Porter V J, Fisher B R, Kastner M A, Bawendi M G. Phys. Rev. B, 2004, 70(19): 195327.
[20] Huang Q, Gao L. Nanotechnology, 2004, 15: 1855.
[21] Robel I, Bunker B A, Kamat P V. Adv. Mater., 2005, 17: 2458.
[22] Sheeney-Haj-Ichia L, Basnar B, Willner I. Angew. Chem. Int. Ed., 2005, 44: 78.
[23] Sheeney-Haj-Ichia L, Wasserman J, Willner I. Adv. Mater., 2002, 14(18): 1323.
[24] Granot E, Patolsky F, Willner I. J. Phys. Chem. B, 2004, 108: 5875.
[25] 匡达 (Kuang D), 胡文彬 (Hu W B). 无机材料学报 (Journal of Inorganic Materials), 2013, 28(3): 235.
[26] 柏嵩 (Bai S), 沈小平 (Shen X P). 化学进展(Progress in Chemistry), 2010, 22(11): 2106.
[27] Huang X, Qi X, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41: 666.
[28] Geng X M, Niu L, Xing Z Y, Song R S, Liu G T, Sun M T, Cheng G S, Zhong H J, Liu Z H, Zhang Z J, Sun L F, Xu H X, Lu L, Liu L W. Adv. Mater., 2010, 22(5): 638.
[29] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339.
[30] Kovtyukhova N I, Ollivier P J, Martin B J, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Chem. Mater., 1999, 11: 771.
[31] Qu L H, Peng X G. J. Am. Chem. Soc., 2002, 124: 2049.
[32] Juarez B H, Klinke C, Kornowski A, Weller H. Nano Lett., 2007, 7: 3564.
[33] Feng M, Sun R Q, Zhan H B, Chen Y. Nanotechnology, 2010, 21: 075601.
[34] Cao A, Liu Z, Chu S S, Wu M H, Ye Z M, Cai Z W, Chang Y L, Wang S F, Gong Q H, Liu Y F. Adv. Mater., 2010, 22 (1): 103.
[35] Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Carbon, 2009, 47: 2054.
[36] Gao P, Liu J C, Sun D D, Ng W. J. Hazard Mater., 2013, 250/251: 412.
[37] Li L L, Liu K P, Yang G H, Wang C M, Zhang J R, Zhu J J. Adv. Funct. Mater., 2011, 21(5): 869.
[38] Huang J, Zhang L M, Chen B, Ji N, Chen F H, Zhang Y, Zhang Z J. Nanoscale, 2010, 2: 2733.
[39] Huang Q, Gao Lian. Nanotechnology, 2004, 15: 1855.
[40] Wang P, Jiang T F, Zhu C Z, Zhai Y M, Wang D J, Dong S J. Nano Res., 2010, 3(11): 794.
[41] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487.
[42] Williams G, Kamat P V. Langmuir, 2009, 25: 13869.
[43] Gao Z Y, Liu N, Wu D P, Tao W G, Xu F, Jiang K. Appl. Surf. Sci., 2012, 258: 2473.
[44] Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y. Journal of Alloys and Compounds, 2012, 524: 5.
[45] Zhou C, Wang Z, Xia J, Via B K, Zhang F, Xia Y, Li Y. C. R. Chimie, 2012, 15: 714.
[46] Liu F, Shao X, Wang J, Yang S, Li H, Meng X, Liu X, Wang M. Journal of Alloys and Compounds, 2013, 551: 327.
[47] Liu F Z, Shao X, Wang J P, Yang S R, Meng X H, Liu X H, Wang M. Mat. Sci. Semicon, Proc., 2013, 16: 429.
[48] Lu Z, Guo C X, Yang H B, Qiao Y, Guo J, Li C M. J. Colloid Interface Sci., 2011, 353(2): 588.
[49] Chen P, Xiao T Y, Li H H, Yang J J, Wang Z, Yao H B, Yu S H. ACS Nano, 2012, 6: 712.
[50] Ghosh T, Lee J H, Meng Z D, Ullah K, Park C Y, Nikam V, Oh W C. Materials Research Bulletin, 2013, 48(3): 1268.
[51] Yan S, Shi Y, Zhao B, Lu T, Hu D, Xu X, Wu J, Chen J. Journal of Alloys and Compounds, 2013, 570: 65.
[52] Kim Y, Han J, Hong B H, Kwon Y. Adv. Mater., 2010, 22: 515.
[53] Juárez B H, Meyns M, Chanaewa A, Cai Y, Klinke C, Weller H. J. Am. Chem. Soc., 2008, 130 (46): 15282.
[54] Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J. ACS Appl. Mater. Interfaces, 2011, 3: 2703.
[55] Yan J, Ye Q, Wang X, Yu B, Zhou F. Nanoscale, 2012, 4(6): 2109.
[56] Liu X J, Pan L K, Lv T, Zhu G, Sun Z, Sun C Q. Chem. Commun., 2011, 47: 11984.
[57] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J. Am. Chem. Soc., 2011, 133: 10878.
[58] Ran J R, Yu J G. Green Chem., 2011, 13: 2708.
[59] 敏世雄 (Min S X), 吕功煊 (Lǘ G X). 物理化学学报 (Acta Phys. Chim. Sin.), 2011, 27(9): 2178.
[60] 陶丽华 (Tao L H), 蔡 燕 (Cai Y), 李在均 (Li Z J), 任国晓 (Ren G X), 刘俊康 (Liu J K). 无机材料学报(Journal of Inorganic Materials), 2011, 26(9): 912.
[61] Zhao J, Wu J, Yu F, Zhang X, Lan Z, Lin J. Electrochim. Acta, 2013, 96: 110.
[62] Chang H X, Lv X J, Zhang H, Li J H. Electrochem. Commun., 2010, 12: 483.
[63] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angewandte Chemie, 2010, 49 (17): 3014.
[64] Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun L T, Zhang Y. Nanoscale, 2012, 4(2): 441.
[65] Wang Y, Yao H B, Wang X H, Yu S H. J. Mater. Chem., 2011, 21: 562.
[66] Zhang N, Yang M Q, Tang Z R, Xu Y J. Journal of Catalysis, 2013, 303: 60.
[67] Guo Z Y, Hao T T, Wang S, Gan N, Li X, Wei D Y. Electrochem. Commun., 2012, 14: 13.
[68] Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosensors and Bioelectronics, 2011, 26: 2252.
[69] Guo Z, Hao T, Duan J, Wang S, Wei D. Talanta, 2012, 30(89): 27.
[70] Hao T, Guo Z, Du S, Shi L. Sensors and Actuators B: Chemical, 2012, 171/172: 803.
[71] Zeng L, Wang R, Zhu L, Zhang J. Colloids Surf. B Biointerfaces, 2013, 110: 8.
[72] Yang M, Javadi A, Gong S. Sens. Actuators B: Chemical, 2011, 155(1): 357.
[73] Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y. Biosens. Bioelectron., 2012, 31: 369.
[74] Xie L, You L, Cao X. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2013, 109: 110.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[5] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[6] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[7] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[10] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[11] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[12] Zheng Na, Jie Suyun, Li Bogeng. Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene [J]. Progress in Chemistry, 2016, 28(5): 665-672.
[13] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[14] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[15] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.