中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1771-1780 DOI: 10.7536/PC130125 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Isolation and Identification of Electrochemically Active Microorganisms

Xiao Yong1, Wu Song1,2, Yang Zhaohui2, Zheng Yue1,2, Zhao Feng1   

  1. 1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
  • Received: Revised: Online: Published:
PDF ( 1559 ) Cited
Export

EndNote

Ris

BibTeX

Bioelectrochemical system (BES), in which electrode reaction is driven by electrochemically active microorganisms (EAM) to recovery energy, degrade contaminants and synthesize high additional value compounds, is a promising biotechnology. EAM is the basis of BES, microorganisms-electrode interaction plays a key role in BES functioning. In contrast with the expanding of BES function, especially BES cathode, the diversity of isolated EAM is limited, and most of them are applied in anode to generate a high power density. In addition, the understanding of microorganisms-electrode interaction mostly confines in Geobacter and Shewanella genus. In this article, we review medium, culture condition and microorganisms identification, as well as cyclic voltammetry, differential pulse voltammetry and chronoamperometry for the isolation and identification of EAMs. We further highlight the research trends of expanding EAM diversity and of microorganisms-electrode interaction, which would promote the application of BES in environmental control and bioenergy production.

Contents
1 Introduction
2 Electrochemically active microorganisms
3 Microorganism isolation
3.1 Culture medium
3.2 Culture condition
4 Microorganism biological identification
4.1 16S/18S rRNA gene sequencing and analysis
4.2 Morphological, physiological and biochemical characterization
5 Characterization of electrochemical activity
5.1 Cyclic voltammetry
5.2 Differential pulse voltammetry and square wave voltammetry
5.3 Chronoamperometry
6 Outlook

 

CLC Number: 

[1] Rozendal R, Hamelers H, Rabaey K, Keller J, Buisman C. Trends Biotechnol., 2008, 26: 450—459
[2] Rabaey K, Rozendal R A. Nat. Rev. Micro., 2010, 8: 706—716
[3] Huang L, Chai X, Chen G, Logan B E. Environ. Sci. Technol., 2011, 45: 5025—5031
[4] Chun C L, Payne R B, Sowers K R, May H D. Water Res., 2013, 47: 141—152
[5] Wang X, Cai Z, Zhou Q, Zhang Z, Chen C. Biotechnol. Bioeng., 2012, 109: 426—433
[6] Gregory K B, Lovley D R. Environ. Sci. Technol., 2005, 39: 8943—8947
[7] Lovley D R, Nevin K P. Curr. Opin. Biotechnol., 2011, 22: 441—448
[8] Weber K A, Achenbach L A, Coates J D. Nat. Rev. Micro., 2006, 4: 752—764
[9] Beneyton T, Beyl Y, Guschin D A, Griffiths A D, Taly V, Schuhmann W. Electroanal., 2011, 23: 1781—1789
[10] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435: 1098—1101
[11] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U. S. A, 2008, 105: 3968—3973
[12] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401—3408
[13] Zhao F, Rahunen N, Varcoe J R, Roberts A J, Avignone-Rossa C, Thumser A E, Slade R C T. Biosens. Bioelectron., 2009, 24: 1931—1936
[14] Liang F, Xiao Y, Zhao F. Chem. Eng. J., DOI: 10.1016/j. cej. 2012.12.021
[15] Strycharz S M, Glaven R H, Coppi M V, Gannon S M, Perpetua L A, Liu A, Nevin K P, Lovley D R. Bioelectrochemistry, 2011, 80: 142—150
[16] Kim B H, Kim H J, Hyun M S, Park D H. J. Microbiol. Biotechnol., 1999, 9: 127—131
[17] Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. Anaerobe, 2001, 7: 297—306
[18] Kan J J, Hsu L, Cheung A C M, Pirbazari M, Nealson K H. Environ. Sci. Technol., 2011, 45: 1139—1146
[19] Yates M D, Kiely P D, Call D F, Rismani-Yazdi H, Bibby K, Peccia J, Regan J M, Logan B E. The Isme Journal, 2012, 6: 2002—2013
[20] Logan B E, Regan J M. Trends Microbiol., 2006, 14: 512—518
[21] Bond D R, Lovley D R. Appl. Environ. Microb., 2003, 69: 1548—1555
[22] Bond D R, Lovley D R. Appl. Environ. Microb., 2005, 71: 2186—2189
[23] Borole A P, O'neill H, Tsouris C, Cesar S. Biotechnol. Lett., 2008, 30: 1367—1372
[24] Bretschger O, Obraztsova A, Sturm C A, Chang I S, Gorby Y A, Reed S B, Culley D E, Reardon C L, Barua S, Romine M F. Appl. Environ. Microb., 2007, 73: 7003—7012
[25] Chaudhuri S K, Lovley D R. Nat. Biotechnol., 2003, 21: 1229—1232
[26] Cheng S A, Xing D F, Call D F, Logan B E. Environ. Sci. Technol., 2009, 43: 3953—3958
[27] Chung K M, Okahe S. Biotechnol. Bioeng., 2009, 104: 901—910
[28] Cournet A, Berge M, Roques C, Bergel A, Delia M L. Electrochim. Acta, 2010, 55: 4902—4908
[29] Cournet A, Delia M L, Bergel A, Roques C, Berge M. Electrochem. Commun., 2010, 12: 505—508
[30] Erable B, Vandecandelaere I, Faimali M, Delia M L, Etcheverry L, Vandamme P, Bergel A. Bioelectrochemistry, 2010, 78: 51—56
[31] Fedorovich V, Knighton M C, Pagaling E, Ward F B, Free A, Goryanin I. Appl. Environ. Microb., 2009, 75: 7326—7334
[32] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14—18
[33] Freguia S, Tsujimura S, Kano K. Electrochim. Acta, 2010, 55: 813—818
[34] Gregory K B, Bond D R, Lovley D R. Environ. Microbiol., 2004, 6: 596—604
[35] Gunasekaran G, Chongdar S, Naragoni S, Rodrigues P V, Bobba R. Int. J. Hydrogen Energ., 2011, 36: 14914—14922
[36] Holmes D E, Bond D R, Lovley D R. Appl. Environ. Microb., 2004, 70: 1234—1237
[37] Holmes D E, Nicoll J S, Bond D R, Lovley D R. Appl. Environ. Microb., 2004, 70: 6023—6030
[38] Liu M, Yuan Y, Zhang L X, Zhuang L, Zhou S G, Ni J R. Bioresource Technol., 2010, 101: 1807—1811
[39] Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J P, Gorby Y A, Goodwin S. Arch. Microbiol., 1993, 159: 336—344
[40] Lyautey E, Cournet A, Morin S, Boulêtreau S, Etcheverry L, Charcosset J Y, Delmas F, Bergel A, Garabetian F. Appl. Environ. Microb., 2011, 77: 5394—5401
[41] Marshall C W, May H D. Energy Environ. Sci., 2009, 2: 699—705
[42] Milliken C, May H. Appl. Microbiol. Biot., 2007, 73: 1180—1189
[43] Nercessian O, Parot S, Délia M L, Bergel A, Achouak W. PLoS ONE, 2012, 7: e34216
[44] Parot S, Nercessian O, Delia M L, Achouak W, Bergel A. J. Appl. Microbiol., 2009, 106: 1350—1359
[45] Parot S, Vandecandelaere I, Cournet A, Délia M L, Vandamme P, Bergé M, Roques C, Bergel A. Bioresource Technol., 2011, 102: 304—311
[46] Pham C A, Jung S J, Phung N T, Lee J, Chang I S, Kim B H, Yi H, Chun J. FEMS Microbiology Letters, 2003, 223: 129—134
[47] Rabaey K, Read S T, Clauwaert P, Freguia S, Bond P L, Blackall L L, Keller J. The Isme Journal, 2008, 2: 519—527
[48] Rezaei F, Xing D, Wagner R, Regan J M, Richard T L, Logan B E. Appl. Environ. Microb., 2009, 75: 3673—3678
[49] Ringeisen B R, Ray R, Little B. J. Power Sources, 2007, 165: 591—597
[50] Strycharz S M, Woodard T L, Johnson J P, Nevin K P, Sanford R A, Loffler F E, Lovley D R. Appl. Environ. Microb., 2008, 74: 5943—5947
[51] Thrash J C, Van Trump J I, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740—1746
[52] Wang A, Liu L, Sun D, Ren N, Lee D J. Int. J. Hydrogen. Energ., 2010, 35: 3178—3182
[53] Wang Y F, Masuda M, Tsujimura S, Kano K. Biotechnol. Bioeng., 2008, 101: 579—586
[54] Wrighton K C, Agbo P, Warnecke F, Weber K A, Brodie E L, Desantis T Z, Hugenholtz P, Andersen G L, Coates J D. The Isme Journal, 2008, 2: 1146—1156
[55] Wrighton K C, Thrash J C, Melnyk R A, Bigi J P, Byrne-Bailey K G, Remis J P, Schichnes D, Auer M, Chang C J, Coates J D. Appl. Environ. Microb., 2011, 77: 7633—7639
[56] Xia X, Cao X X, Liang P, Huang X, Yang S P, Zhao G G. Appl. Microbiol. Biot., 2010, 87: 383—390
[57] Xing D, Cheng S, Logan B, Regan J. Appl. Microbiol. Biot., 2010, 85: 1575—1587
[58] Xing D, Zuo Y, Cheng S, Regan J M, Logan B E. Environ. Sci. Technol., 2008, 42: 4146—4151
[59] Xu S, Liu H. J. Appl. Microbiol., 2011, 111: 1108—1115
[60] Zhang C P, Chen S S, Liu G L, Zhang R D, Xie J. Pedosphere, 2012, 22: 528—535
[61] Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L. Electrochem. Commun., 2008, 10: 1641—1643
[62] Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z. Chem. Commun., 2006, 2257—2259
[63] Zhao F, Rahunen N, Varcoe J R, Chandra A, Avignone-Rossa C, Thumser A E, Slade R C T. Environ. Sci. Technol., 2008, 42: 4971—4976
[64] Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. mBio, 2010, 1: e00103
[65] Lovley D R. Annu. Rev. Microbiol., 2012, 66: 391—409
[66] 叶姜瑜(Ye J Y), 罗固源(Luo G Y). 微生物学报(Acta Microbiologica Sinica), 2005, 45: 478—482
[67] Amann R I, Ludwig W, Schleifer K H. Microbiol. Rev., 1995, 59: 143—169
[68] Rabaey K, Boon N, Siciliano S D, Verhaege M, Verstraete W. Appl. Environ. Microb., 2004, 70: 5373—5382
[69] Yuan S J, He H, Sheng G P, Chen J J, Tong Z H, Cheng Y Y, Li W W, Lin Z Q, Zhang F, Yu H Q. Scientific Reports, 2013, 3: art. no. 1315
[70] Zuo Y, Xing D, Regan J M, Logan B E. Appl. Environ. Microb., 2008, 74: 3130—3137
[71] Richter H, Lanthier M, Nevin K P, Lovley D R. Appl. Environ. Microb., 2007, 73: 5347—5353
[72] Manaia C M, Nunes O C, Morais P V, Costa M S D. J. Appl. Microbiol., 1990, 69: 871—876
[73] Schut F, De Vries E J, Gottschal J C, Robertson B R, Harder W, Prins R A, Button D K. Appl. Environ. Microb., 1993, 59: 2150—2160
[74] Saito A, Mitsui H, Hattori R, Minamisawa K, Hattori T. Fems Microbiol. Ecol., 1998, 25: 277—286
[75] 毛跃建(Mao Y J), 张晓君(Zhang X J), 张宝让(Zhang B R), 赵立平(Zhao L P). 微生物学报(Acta Microbiologica Sinica), 2009, 48: 1634—1641
[76] Xiao L, Young E B, Berges J A, He Z. Environ. Sci. Technol., 2012, 46: 11459—11466
[77] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392—1395
[78] Keasling J D. Science, 2010, 330: 1355—1358
[79] Embley T, Stackebrandt E. Annu. Rev. Microb., 1994, 48: 257—289
[80] Fox G E, Wisotzkey J D, Jurtshuk P. Int. J. Syst. Bacteriol., 1992, 42: 166—170
[81] Goodfellow M, Chun J, Stackebrandt E, Kroppenstedt R M. Int. J. Syst. Evol. Micr., 2002, 52: 749—755
[82] Yassin A F, Rainey F A, Brzezinka H, Burghardt J, Lee H J, Schaal K P. Int. J. Syst. Bacteriol., 1995, 45: 522—527
[83] 陈立香(Chen L X), 肖勇(Xiao Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2012, 24: 157—162
[84] Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer R L, Kjeldsen K U, Schreiber L, Gorby Y A, El-Naggar M Y. Nature, 2012, 491(7423): 218—221. DOI: 10.1038/nature11586
[85] Wang Z, Deng H, Chen L, Xiao Y, Zhao F. Bioresource Technol., 2013, 132: 387—390. DIO: 10.1016/j. biortech. 2012.11.026
[86] Harnisch F, Freguia S. Chem. Asian J., 2012, 7: 466—475
[87] Liu X W, Sun X F, Huang Y X, Li D B, Zeng R J, Xiong L, Sheng G P, Li W W, Cheng Y Y, Wang S G, Yu H Q. Biotechnol. Bioeng., 2012, 110: 173—179
[88] Anson F(著), 黄慰曾(Huang W Z)(译). 电化学和电分析化学(Electrochemistry and Electroanalytical Chemistry). 北京(Beijing): 北京大学出版社(Peking University Press), 1983
[89] Wu X E, Zhao F, Rahunen N, Varcoe J R, Avignone-Rossa C, Thumser A E, Slade R C T. Angew. Chem. Int. Ed., 2011, 50: 427—430
[90] Zhao F, Slade R C T, Varcoe J R. Chem. Soc. Rev., 2009, 38: 1926—1939
[91] Masuda M, Freguia S, Wang Y F, Tsujimura S, Kano K. Bioelectrochemistry, 2010, 78: 173—175
[92] Bard A J, Faulkner L R(著), 邵元华(Shao Y H), 朱果逸(Zhu G Y), 董献堆(Dong X D), 张柏林(Zhang B L)(译). 电化学方法原理和应用, 第2版(Electrochemical methods: Fundamentals and applications, ed. 2); 北京(Beijing): 化学工业出版社(Chemical Industry Press), 2005
[93] Marsili E, Sun J, Bond D R. Electroanal., 2010, 22: 865—874
[94] Jeuken L J C, Jones A K, Chapman S K, Cecchini G, Armstrong F A. J. Am. Chem. Soc., 2002, 124: 5702—5713
[95] Wagner R C, Call D F, Logan B E. Environ. Sci. Technol., 2010, 44: 6036—6041
[96] Wei J, Liang P, Cao X, Huang X. Environ. Sci. Technol., 2010, 44: 3187—3191
[97] Schroder U. Phys. Chem. Chem. Phys., 2007, 9: 2619—2629
[98] Esteve-Nunez A, Sosnik J, Visconti P, Lovley D R. Environ. Microbiol., 2008, 10: 497—505
[99] Zhu X, Yates M D, Logan B E. Electrochem. Commun., 2012, 22: 116—119
[100] Carmona-Martínez A A, Harnisch F, Kuhlickeö U, Neu T R, Schrder U. Bioelectrochemistry, DOI: 10.1016/j. bioelechem. 2012.05.002
[101] Finkelstein D A, Tender L M, Zeikus J G. Environ. Sci. Technol., 2006, 40: 6990—6995
[102] Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q. Electrochim. Acta, 2009, 54: 1109—1114
[103] Mahadevan R, Palsson B, Lovley D R. Nat. Rev. Micro., 2011, 9: 39—50

[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[3] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[4] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[5] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[6] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[7] Chen Lixiang, Xiao Yong, Zhao Feng. Biocathodes in Microbial Fuel Cells [J]. Progress in Chemistry, 2012, 24(01): 157-162.
[8] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.
[9] Liu Hongfang Zheng Bijuan. Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(6): 1349-1355.
[10] Mao Yanping Cai Lankun Zhang Lehua Hou Haiping Huang Guangtuan Liu Yongdi. Biocathodes in Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1672-1677.
[11] Lu Na1,2 Zhou Shungui2 Ni Jinren1**. Mechanism of Energy Generation of Microbial Fuel Cells [J]. Progress in Chemistry, 2008, 20(0708): 1233-1240.