中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1208-1218 DOI: 10.7536/PC121118 Previous Articles   Next Articles

• Review •

Molecular Simulations of ATP-Binding Cassette Transporters

Chang Shanyan, Liu Fufeng*   

  1. Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 843 ) Cited
Export

EndNote

Ris

BibTeX

The ATP-binding cassette (ABC) transporters are integral membrane proteins that can use the energy provided by ATP hydrolysis to actively drive substrates across cell membranes. ABC transporters are linked to many important physiological processes and human diseases. Although many researches have been done, some experimental methods have a lot of restrictions on them because of their complex structures. However, molecular simulations are complements to experimental methods and become indispensable research tools. In this paper, the recent development of the applications of the molecular simulation techniques (e.g., homology modeling, molecular docking and molecular dynamics simulation) on the research of ABC transporters is reviewed. It includes that 3D structures of ABC transporters are built using homology modeling, the binding sites of ABC transporters are identified using molecular docking, and the molecular mechanism of the conformational transition of ABC transporters are probed using molecular dynamics simulations. Finally, the challenges and the developing prospects are proposed and listed at the end of this paper. Contents
1 Introduction
2 Homology modeling of ABC transporters
2.1 Fundamentals of homology modeling
2.2 Building 3D structures of ABC transporters
3 Molecular docking studies of ABC transporters
3.1 Fundamentals of molecular docking
3.2 Molecular docking studies on human P-gp
4 Molecular dynamics simulations of ABC transporters
4.1 Fundamentals of MD simulations
4.2 Conventional MD simulations of ABC transporters
4.3 Targeted MD simulations of ABC transporters
4.4 Steered MD simulations of ABC transporters
5 Conclusions and outlooks

CLC Number: 

[1] Higgins C F, Haag P D, Nikaido K, Ardeshir F, Garcia G, Ames G F. Nature, 1982, 298(5876): 723-727
[2] Overduin P, Boos W, Tommassen J. Mol. Microbiol., 1988, 2(6): 767-775
[3] Riordan J R, Rommens J M, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J L, Drumm M L, Iannuzzi M C, Collins F S, Tsui L C. Science, 1989, 245(4922): 1066-1073
[4] Hiles I D, Gallagher M P, Jamieson D J, Higgins C F. J. Mol. Biol., 1987, 195(1): 125-142
[5] Gilson E, Nikaido H, Hofnung M. Nucleic. Acids Res., 1982, 10(22): 7449-7458
[6] Gros P, Croop J, Housman D. Cell, 1986, 47(3): 371-380
[7] Higgins C F. Annu. Rev. Cell Biol., 1992, 8: 67-113
[8] Higgins C F, Hiles I D, Salmond G P C, Gill D R, Downie J A, Evans I J, Holland I B, Gray L, Buckel S D, Bell A W, Hermodson M A. Nature, 1986, 323(6087): 448-450
[9] Jones P M, George A M. Cell. Mol. Life Sci., 2004, 61(6): 682-699
[10] Davidson A L, Shuman H A, Nikaido H. Proc. Nat. Acad. Sci. U. S. A., 1992, 89(6): 2360-2364
[11] Friedrich M J, de Veaux L C, Kadner R J. J. Bacteriol., 1986, 167(3): 928-934
[12] Juliano R L, Ling V. Biochim. Biophys. Acta, 1976, 455(1): 152-162
[13] Ward A, Reyes C L, Yu J, Roth C B, Chang G. Proc. Nat. Acad. Sci. U. S. A., 2007, 104(48): 19005-19010
[14] Dawson R J, Locher K P. Nature, 2006, 443(7108): 180-185
[15] Oldham M L, Davidson A L, Chen J. Current Opinion in Structural Biology, 2008, 18(6): 726-733
[16] Longley D B, Johnston P G. J. Pathol., 2005, 205(2): 275-292
[17] Higgins C F, Linton K J. Nat. Struct. Mol. Biol., 2004, 11(10): 918-926
[18] Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O'Donnell N, Dawson D C, Sansom M S. Biochemistry, 2012, 51(11): 2199-2212
[19] Sauna Z E, Ambudkar S V. Mol. Cancer Ther., 2007, 6(1): 13-23
[20] Aller S G, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell P M, Trinh Y T, Zhang Q, Urbatsch I L, Chang G. Science, 2009, 323(5922): 1718-1722
[21] Parveen Z, Stockner T, Bentele C, Pferschy S, Kraupp M, Freissmuth M, Ecker G F, Chiba P. Mol. Pharmacol., 2011, 79(3): 443-452
[22] Colabufo N A, Berardi F, Perrone M G, Capparelli E, Cantore M, Inglese C, Perrone R. Curr. Top. Med. Chem., 2010, 10(17): 1703-1714
[23] Zou P, Bortolus M, McHaourab H S. J. Mol. Biol., 2009, 393(3): 586-597
[24] Loo T W, Bartlett M C, Clarke D M. Biochemistry, 2011, 50(5): 672-685
[25] Verhalen B, Wilkens S. J. Biol. Chem., 2011, 286(12): 10476-10482
[26] Doshi R, Woebking B, van Veen H W. Proteins, 2010, 78(14): 2867-2872
[27] Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano J R, Landstrom A, Sansom M, Dawson D C. Biochemistry, 2009, 48(42): 10078-10088
[28] Scheraga H A, Khalili M, Liwo A. Annu. Rev. Phys. Chem., 2007, 58: 57-83
[29] Shinoda W, DeVane R, Klein M L. Curr. Opin. Struct. Biol., 2012, 22(2): 175-186
[30] Zhang N, Liu F F, Dong X Y, Sun Y. J. Phys. Chem. B, 2012, 116(24): 7040-7047
[31] Liu F F, Dong X Y, He L, Middelberg A P, Sun Y. J. Phys. Chem. B, 2011, 115(41): 11879-11887
[32] Liu F F, Dong X Y, Sun Y. J. Mol. Graph. Model., 2008, 27(4): 421-429
[33] Liu F F, Ji L, Dong X Y, Sun Y. J. Phys. Chem. B, 2009, 113(32): 11320-11329
[34] Liu F F, Ji L, Zhang L, Dong X Y, Sun Y. J. Chem. Phys., 2010, 132(22): art. no. 3453713
[35] Bellamy W T. Annu. Rev. Pharmacool. Toxicol., 1996, 36: 161-183
[36] Kaczanowski S, Zielenkiewicz P. Theor. Chem. Acc., 2010, 125(3): 643-650
[37] Ginalski K. Curr. Opin. Struct. Biol., 2006, 16(2): 172-177
[38] Ogawa H, Toyoshima C. Proc. Nat. Acad. Sci. U. S. A., 2002, 99(25): 15977-15982
[39] Marti-Renom M A, Stuart A C, Fiser A, Sanchez R, Melo F, Sali A. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 291-325
[40] Jin M S, Oldham M L, Zhang Q, Chen J. Nature, 2012, 490(7421): 566-569
[41] Klepsch F, Ecker G F. Mol. Inf., 2010, 29(4): 276-286
[42] Kerr I D, Jones P M, George A M. FEBS J, 2010, 277(3): 550-563
[43] Ravna A W, Sylte I, Sager G. Theor. Biol. Med. Modell., 2007, 4: art. no. 33
[44] Globisch C, Pajeva I K, Wiese M. ChemMedchem, 2008, 3(2): 280-295
[45] Mandal D, Moitra K, Ghosh D, Xia D, Dey S. Biochemistry, 2012, 51(13): 2852-2866
[46] Wise J G. Biochemistry, 2012, 51(25): 5125-5141
[47] Ravna A, Sylte I, Sager G. Theor. Biol. Med. Modell., 2009, 6(1): art. no. 20
[48] Pajeva I K, Globisch C, Wiese M. FEBS J., 2009, 276(23): 7016-7026
[49] Tarcsay A, Keseru G M. Future Med. Chem., 2011, 3(3): 297-307
[50] Klepsch F, Chiba P, Ecker G F. Drug Future, 2009, 34: 164-164
[51] O'Mara M L, Tieleman D P. FEBS Lett., 2007, 581(22): 4217-4222
[52] Becker J P, Depret G, Van Bambeke F, Tulkens P M, Prevost M. BMC Struct. Biol., 2009, 9: 3
[53] Sakurai A, Onishi Y, Hirano H, Seigneuret M, Obanayama K, Kim G, Liew E L, Sakaeda T, Yoshiura K I, Niikawa N, Sakurai M, Ishikawa T. Biochemistry, 2007, 46(26): 7678-7693
[54] Stockner T, de Vries S J, Bonvin A, Ecker G F, Chiba P. FEBS J., 2009, 276(4): 964-972
[55] Mornon J P, Lehn P, Callebaut I. Cell Mol. Life Sci., 2008, 65(16): 2594-2612
[56] Serohijos A W, Hegedus T, Aleksandrov A A, He L, Cui L, Dokholyan N V, Riordan J R. Proc. Nat. Acad. Sci. U. S. A., 2008, 105(9): 3256-3261
[57] Gilson M K, Zhou H X. Annu. Rev. Biophys. Biomol. Struct., 2007, 36(1): 21-42
[58] Kitchen D B, Decornez H, Furr J R, Bajorath J. Nat. Rev. Drug. Discov., 2004, 3(11): 935-949
[59] Brooijmans N, Kuntz I D. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1): 335-373
[60] Chen L, Li Y, Yu H, Zhang L, Hou T. Drug Discovery Today, 2012, 17(7/8): 343-351
[61] Dolghih E, Bryant C, Renslo A R, Jacobson M P. PLoS Comput. Biol., 2011, 7(6): art. no. e1002083
[62] Ohnuma S, Chufan E, Nandigama K, Jenkins L M, Durell S R, Appella E, Sauna Z E, Ambudkar S V. Biochemistry, 2011, 50(18): 3724-3735
[63] Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E. Curr. Opin. Struct. Biol., 2009, 19(2): 120-127
[64] Hoover W G. Annu. Rev. Phys. Chem., 1983, 34(1): 103-127
[65] Wen P C, Tajkhorshid E. Biophys J, 2008, 95(11): 5100-5110
[66] Wieczorek G, Zielenkiewicz P. Journal of Cystic Fibrosis, 2008, 7(4): 295-300
[67] Jones P M, George A M. Proc. Nat. Acad. Sci. U. S. A., 2002, 99(20): 12639-12644
[68] Jones P M, George A M. J. Biol. Chem., 2007, 282(31): 22793-22803
[69] Jones P M, George A M. Proteins, 2009, 75(2): 387-396
[70] Jones P M, George A M. J. Phys. Chem. A, 2012, 116(11): 3004-3013
[71] Senior A E, al-Shawi M K, Urbatsch I L. FEBS Lett, 1995, 377(3): 285-289
[72] Oliveira A S F, Baptista A M, Soares C M. J. Phys. Chem. B, 2010, 114(16): 5486-5496
[73] Damas J M, Oliveira A S F, Baptista A M, Soares C M. Protein Sci., 2011, 20(7): 1220-1230
[74] Newstead S, Fowler P W, Bilton P, Carpenter E P, Sadler P J, Campopiano D J, Sansom M S P, Iwata S. Structure, 2009, 17(9): 1213-1222
[75] Becker J P, Van Bambeke F, Tulkens P M, Prevost M. J. Phys. Chem. B, 2010, 114(48): 15948-15957
[76] Oloo E O, Fung E Y, Tieleman D P. J. Biol. Chem., 2006, 281(38): 28397-28407
[77] Oliveira A S, Baptista A M, Soares C M. Proteins, 2011, 79(6): 1977-1990
[78] Oliveira A S F, Baptista A M, Soares C M. Plos Compu. Biol., 2011, 7(8): art. no. e1002128
[79] Oloo E O, Tieleman D P. J. Biol. Chem., 2004, 279(43): 45013-45019
[80] Aittoniemi J, de Wet H, Ashcroft F M, Sansom M S P. Plos Comput. Biol., 2010, 6(4): art. no. e1000762
[81] Gyimesi G, Ramachandran S, Kota P, Dokholyan N V, Sarkadi B, Hegedus T. Biochim. Biophys. Acta-Biomembr., 2011, 1808(12): 2954-2964
[82] Sonne J, Kandt C, Peters G H, Hansen F Y, Jensen M , Tieleman D P. Biophys. J., 2007, 92(8): 2727-2734
[83] Ivetac A, Campbell J D, Sansom M S P. Biochemistry, 2007, 46(10): 2767-2778
[84] Wen P C, Tajkhorshid E. Biophys. J., 2011, 101(3): 680-690
[85] Mehmood S, Domene C, Forest E, Jault J M. Proc. Nat. Acad. Sci. U. S. A., 2012, 109(27): 10832-10836
[86] Ivetac A, Sansom M. Eur. Biophys. J., 2008, 37(4): 403-409
[87] Ferreira R J, Ferreira M-J U, dos Santos D J V A. J. Chem. Theory Comput., 2012, 8(6): 1853-1864
[88] Xu X, Li R B, Ma M, Wang X, Wang Y H, Zou H F. Soft Matter, 2012, 8(10): 2915-2923
[89] Ishikawa T, Sakurai A, Hirano H, Lezhava A, Sakurai M, Hayashizaki Y. Pharmacol. Ther., 2010, 126(1): 69-81
[90] Schlitter J, Engels M, Krüger P. J. Mol. Graphics, 1994, 12(2): 84-89
[91] Sanbonmatsu K Y, Tung C S. J. Struct. Biol., 2007, 157(3): 470-480
[92] Skjaerven L, Reuter N, Martinez A. Future Med. Chem., 2011, 3(16): 2079-2100
[93] Ovchinnikov V, Karplus M. J. Phys. Chem. B, 2012, 116(29): 8584-8603
[94] Weng J W, Fan K N, Wang W N. J. Biol. Chem., 2010, 285(5): 3053-3063
[95] Weng J, Fan K, Wang W. PLoS One, 2012, 7(1): art. no. e30465
[96] Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K. J. Mol. Graph., 2001, 19(1): 13-25
[97] Isralewitz B, Gao M, Schulten K. Curr. Opin. Struct. Biol., 2001, 11(2): 224-230
[98] Sotomayor M, Schulten K. Science, 2007, 316(5828): 1144-1148
[99] Sun T G, Li C H, Chen W Z, Wang C X. J. Mol. Struct.: THEOCHEM, 2009, 905(1/3): 51-58
[100] Liu M, Sun T, Hu J, Chen W, Wang C. Biophys. Chem., 2008, 135(1/3): 19-24
[101] St-Pierre J F, Bunker A, Rog T, Karttunen M, Mousseau N. J. Phys. Chem. B, 2012, 116(9): 2934-2942
[102] Bai S, Zhou R, Liu F F. Acta Phys. Chim. Sin. 2013, 29(2): 439-448
[103] Liu F F, Wang, T, Dong X Y, Sun Y. J. Chromatogra. A. 2007, 1175 (2): 249-258
[104] Tozzini V. Curr. Opin. Struct. Biol., 2005, 15(2): 144-150
[105] Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H. J. Phys. Chem. B, 2007, 111(27): 7812-7824
[106] De Jong D H, Periole X, Marrink S J. J. Chem. Theory Comput., 2012, 8(3): 1003-1014

[1] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[2] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[3] Lei Dongsheng, Tong Huimin, Zhang Lei, Zhang Xing, Zhang Shengli, Ren Gang. Structure and Function of Cholesteryl Ester Transfer Protein in Transferring Cholesteryl Ester [J]. Progress in Chemistry, 2014, 26(05): 879-888.
[4] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[5] Chen Jingfei, Hao Jingcheng. Coarse-Grained Molecular Dynamics Simulation of Surfactants in Aqueous Solution [J]. Progress in Chemistry, 2012, (10): 1890-1896.
[6] Wu Ruibo, Cao Zexing, Zhang Yingkai. Computational Simulations of Zinc Enzyme: Challenges and Recent Advances [J]. Progress in Chemistry, 2012, 24(06): 1175-1184.
[7] . Computational Chemistry of Protein Kinase A and Its Inhibitor Balanol [J]. Progress in Chemistry, 2010, 22(05): 993-1001.
[8] . Theoretical Calculation of Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 803-811.
[9] . Molecular Dynamics Simulation for Room Temperature Ionic Liquids [J]. Progress in Chemistry, 2009, 21(0708): 1427-1433.
[10] Deng Pingye 1,2,Zhang Donghai 1, Tian Yajun 1, Chen Yunfa 1*, Ding Hui 3. Molecular Dynamics Simulations of Self-Assembling [J]. Progress in Chemistry, 2007, 19(9): 1249-1257.
[11]

Ye Deju1, Luo Xiaomin1, Shen Jianhua1, Zhu Weiliang1, Shen Xu1,2 , Jiang Hualiang1,2, Liu Hong1**

. Discovering Potential Drug Leads via Docking, Synthesis and Bioassay [J]. Progress in Chemistry, 2007, 19(012): 1939-1946.
[12] Cai Wensheng,Lin Yi,Shao Xueguang**. Interatomic Potential Function in Cluster Research [J]. Progress in Chemistry, 2005, 17(04): 588-596.