中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1187-1197 DOI: 10.7536/PC121130 Previous Articles   Next Articles

• Review •

Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications

Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue   

  1. School of Pharmacy, Anhui Medical University, Hefei 230032, China
  • Received: Revised: Online: Published:
PDF ( 1294 ) Cited
Export

EndNote

Ris

BibTeX

The theory and applications of chemiluminescence (CL) have been investigated for many years, but the study of CL was limited to the molecular and ion systems. Nanoparticles (NPs) have quantum size effects, high surface energy, and large surface area, which dramatically change their density states and the spatial scale of their electronic motion. The redox reactions can be strongly catalyzed by NPs, which is promising for the signal amplification of CL. In the recent years, NP-involved CL became one of the most attractive developments, in which NPs can participate in CL reactions as catalyst,reductant, nanosized reaction platform, and energy acceptor. In this review, the NP-involved luminol CL system and its coupling with separation technology such as high performance liquid chromatography (HPLC), capillary electrophoresis (CE) are described. NPs as a novel response unit of CL system are very important for increasing the luminescent efficiency of luminol reaction and developing new luminol CL system. Different kinds of NPs have been reported to participate luminol CL reaction, including gold (AuNPs), platinum (PtNPs), silver (AgNPs), bimetallic NPs, semiconductor NPs, and magnetic (MNPs). The NP-involved luminol CL is not only widely applied in the environmental, pharmaceutical and food analysis, but also shows great potential in immunoassay. Furthermore, some critical challenges and their possible solutions in the study of NP-involved luminol CL are briefly discussed. Contents
1 Introduction
2 AuNPs-catalyzed luminol CL
2.1 AuNPs-catalyzed luminol-H2O2 CL
2.2 AuNPs-catalyzed luminol-ferricyanide CL
2.3 AuNPs-catalyzed luminol-periodate CL
2.4 AuNPs-catalyzed luminol-AgNO3 CL
2.5 AuNPs-catalyzed other luminol CL
3 PtNPs involved luminol CL
4 AgNPs involved luminol CL
5 Other nanoparticles-involved luminol CL
5.1 Bimetallic nanoparticles-involved luminol CL
5.2 Semiconductor nanoparticles-involved luminol CL
5.3 Magnetic nanoparticles-involved luminol CL
6 Separation technology coupling with nanoparticles-involved luminol CL detection
6.1 Coupling with HPLC
6.2 Coupling with CE
7 Conclusion and outlook

CLC Number: 

[1] DE Dios A S, Diaz-Garcia M E. Anal. Chim. Acta, 2010, 666: 1-22
[2] Lines M G. J. Alloys Compd., 2008, 449: 242-245
[3] Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes T F. Sci. Total Environ., 2010, 408: 1745-1754
[4] Wardencki W, Zygmunt B. Anal. Chim. Acta, 1991, 255: 1-13
[5] Mendenhall G D. Angew. Chem. Int. Ed., 1990, 29: 362-373
[6] Beck S, Koster H. Anal. Chem., 1990, 62: 2258-2270
[7] Steele R W. Clin. Infect. Dis., 1991, 13: 918-925
[8] Wang X, Lin J M, Liu M L, Cheng X L. Trends Anal. Chem., 2009, 28: 75-87
[9] Lu C, Qu F, Lin J M, Yamada M. Anal. Chim. Acta, 2002, 474: 107-114
[10] Lu C, Lin J M. Catal. Today, 2004, 90: 343-347
[11] Liang S X, Zhao L X, Zhang B T, Lin J M. J. Phys. Chem. A, 2008, 112: 618-623
[12] Marquette C A, Blum L J. Anal. Bioanal. Chem., 2006, 385: 546-554
[13] Yamaguchi M, Yoshida H, Nohta H. J. Chromatogr. A, 2002, 950: 1-19
[14] Isacsson U, Wettermark G. Anal. Chim. Acta, 1974, 68: 339-362
[15] White E H, Bursey M M. J. Am. Chem. Soc., 1964, 86: 941-942
[16] Lin J M, Yamada M. Anal. Chem., 2000, 72: 1148-1155
[17] Lu C, Song G, Lin J M. Trends Anal. Chem., 2006, 25: 985-995
[18] Lin J M, Yamada M. Trends Anal. Chem., 2003, 22: 99-107
[19] Giokas D L, Vlessidis A G, Tsogas G Z, Evmiridis N P. Trends Anal. Chem., 2010, 29: 1113-1126
[20] Zhang Z F, Cui H, Lai C Z, Liu L J. Anal. Chem., 2005, 77: 3324-3329
[21] Wang L, Yang P, Li Y X, Chen H, Li M, Luo F. Talanta, 2007, 72: 1066-1072
[22] Lan D, Li B, Zhang Z J. Biosens. Bioelectron., 2008, 24: 934-938
[23] Li Q Q, Liu F, Lu C, Lin J M. J. Phys. Chem. C, 2011, 115: 10964-10970
[24] Chen Q S, Bai S L, Lu C. Talanta, 2012, 89: 142-148
[25] Lu C, Li Q Q, Chen S, Zhao L, Zheng Z. Talanta, 2011, 85: 476-481
[26] Yang X Y, GuoY S, Bi S, Zhang S S. Biosens. Bioelectron., 2009, 24: 2707-2711
[27] Yang X Y, Guo Y S, Wang A G. Anal. Chim. Acta, 2010, 666: 91-96
[28] Li Q Q, Zhang L J, Li J, Lu C. Trends Anal. Chem., 2011, 30: 401-413
[29] Duan C F, Cui H, Zhang Z F, Liu B, Guo J Z, Wang W. J. Phys. Chem. C, 2007, 111: 4561-4566
[30] Li S F, Li X Z, Xu J, Wei X. Talanta, 2008, 75: 32-37
[31] Zisimopoulos E G, Tsogas G Z, Giokas D L, Kapakoglou N I, Vlessidis A G. Talanta, 2009, 79: 893-899
[32] Koutsoulis N P, Giokas D L, Vlessidis A G, Tsogas G Z. Anal. Chim. Acta, 2010, 669: 45-52
[33] Cao Z J, Lau C, Lu J Z. Analyst, 2004, 129: 1262-1266
[34] Cui H, Guo J Z, Li N, Liu L J. J. Phys. Chem. C, 2008, 112: 11319-11323
[35] Duan C F, Yu Y Q, Cui H. Analyst, 2008, 133: 1250-1255
[36] Boro R C, Kaushal J, Nangia Y, Wangoo N, Bhasinc A, Raman Suri C. Analyst, 2011, 136: 2125-2130
[37] Du J X, Quan J, WangY D. Talanta, 2012, 90: 117-122
[38] Safavi A, Absalan G, Bamdad F. Anal. Chim. Acta, 2008, 610: 243-248
[39] Xu S L, Cui H. Luminescence, 2007, 22: 77-87
[40] Niazov T, Shlyahovsky B, Willner I. J. Am. Chem. Soc., 2007, 129: 6374-6375
[41] Gorman B A, Francis P S, Dunstan D E, Barnett N W. Chem. Commun., 2007, 395-397
[42] Guo J Z, Cui H, Zhou W, Wang W. J. Photochem. Photobiol., A, 2008, 193: 89-96
[43] Chen H, Gao F, He R, Cui D X. J. Colloid Interface Sci., 2007, 315: 158-163
[44] Li Y H, Li Y K, Yang Y. Appl. Spectrosc., 2011, 65: 376-381
[45] Li N, Gu J, Cui H. J. Photochem. Photobiol. A, 2010, 215: 185-190
[46] Liu W, Kou J, Jiang X L, Zhang Z J, Qi H L. J. Lumin., 2012, 132: 1048-1054
[47] 寇娟(Kou J), 刘伟(Liu W), 王瑞平(Wang D P), 章竹君(Zhang Z J). 分析试验室(Chin. J. Anal. Lab.), 2012, 31: 1-5
[48] Liu C, Li B X. Anal. Bioanal. Chem., 2011, 401: 229-235
[49] Li S F, Sun H M, Wang D, Hong J G, Tao S J, Yu H Y, Wang X H, Wei X W. Luminescence, 2012, 27: 211-216
[50] Chen X L, Wang C, Tan X M, Wang J. Anal. Chim. Acta, 2011, 689: 92-96
[51] Haghighi B, Bozorgzadeh S. Microchem. J., 2010, 95: 192-197
[52] Lee I, Han SW, Kim K. Chem. Commun., 2001, 1782-1783
[53] Ibanez F J, Zamborini F P. ACS Nano, 2008, 2: 1543-1552
[54] Li S F, Zhang X M, Yao Z J, Yu R, Huang F, Wei X W. J. Phys. Chem. C, 2009, 113: 15586-15596
[55] Li N, Wang W, Tian D Y, Cui H. Chem. Commun., 2010, 1520-1522
[56] Li S F, Tao S J, Wang F F, Hong J G, Wei X W. Microchim. Acta, 2010, 169: 73-78
[57] Huang X Y, Li L, Qian H F, Dong C, Ren J. Angew. Chem. Int. Ed., 2006, 45: 5140-5143
[58] Li S F, Zhang X M, Du W X, Ni Y H, Wei X W. J. Phys. Chem. C, 2009, 113: 1046-1051
[59] Wu J, Fu X C, Xie C G, Yang M, Fang W, Gao S. Sens. Actuators B, 2011, 160: 511-516
[60] Chen W, Hong L, Liu A L, Liu J Q, Lin X H, Xia X H. Talanta, 2012, 99: 643-648
[61] He S H, Shi W B, Zhang X D, Li J, Huang Y. Talanta, 2010, 82: 377-383
[62] Shi W B, Wang H, Huang Y M. Luminescence, 2011, 26: 547-552
[63] Rezaei B, Ensafi A A, Zarei L, Kameli P. Luminescence, 2012, 27: 390-397
[64] Li N, Guo J Z, Yu Y Q, Yu Y, Cui H, Mao L, Lin Y. Anal. Chim. Acta, 2009, 645: 48-55
[65] Li Q Q, Shang F, Lu C, Zheng Z, Lin J M. J. Chromatogr. A, 2011, 1218: 9064-9070
[66] Zhang Q L, Wu L, Lv C, Zhang X Y. J. Chromatogr. A, 2012, 1242: 84-91
[67] Zhao S L, Niu T X, Song Y R, Liu Y M. Electrophoresis, 2009, 30: 1059-1065
[68] Zhao S L, Lan X H, Liu Y M. Electrophoresis, 2009, 30: 2676-2680
[69] Liu Q C, Wu J Q, Tian J, Zhang C L, Gao J J, Latep N, Ge Y, Qin W D. Talanta, 2012, 97: 193-198

[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[5] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[6] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[7] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[8] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[9] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[10] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[11] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[12] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[13] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[14] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[15] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.