中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 555-562 DOI: 10.7536/PC121056 Previous Articles   Next Articles

• Review •

Introduction of Metal Complex-Nucleic Acid Interactions into Cells

Yang Chanli, Dong Xiongwei, Jiang Nan, Zhang Dan, Liu Changlin*   

  1. Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
  • Received: Revised: Online: Published:
PDF ( 897 ) Cited
Export

EndNote

Ris

BibTeX

The exploration on metal complex-nucleic acid interactions plays key roles not only in rational design of both new metal-based anticancer drugs and effective hydrolytic cleaving agents of nucleic acids, but also in development of specific recognition probes of nucleic acid structures. Currently, the metal complex-nucleic acid interactions are being introduced into cell biological studies. For example, the intracellular localization imaging methods of nuclear and mitochondrial DNAs are being developed based on the DNA binding of ruthenium(Ⅱ) complexes. The effects of metal complex binding to nucleic acids on intracellular signal transduction and epigenetic inheritance have attracted a good deal of attention. The metal complexes that may act as nonviral nucleic acid carriers are being designed on the basis of their ability to condense nucleic acids. We review the important advances in investigation on the intracellular metal complex-nucleic acid interactions by utilization of typical cases.

Contents
1 Introduction
2 Metal complexes used as localization imaging agents of nuclear and mitochondrial DNAs
3 Effects of nucleic acid-metal complex interactions on intracellular signal transduction
4 Nucleic acid-metal complex interactions and epigenetic inheritance
5 Metal complexes used as nonviral nucleic acid carriers
6 Outlook

CLC Number: 

[1] 王晓勇(Wang X Y), 郭子建(Guo Z J). 化学进展(Progress in Chemistry), 2009, 21: 836-845
[2] 耿杰(Geng J), 于海佳(Yu H J), 张海元(Zhang H Y), 徐海霞(Xu H X), 曲晓刚(Qu X G). 化学进展(Progress in Chemistry), 2009, 5: 68-74
[3] Liu C L, Yu S W, Li D F, Liao Z R, Sun X H, Xu H B. Inorg. Chem., 2002, 41: 913-922
[4] Liu C L, Wang M, Zhang T, Sun H Z. Coord. Chem. Rev., 2004, 248: 147-168
[5] Liu C L, Wang L. Dalton Trans., 2009, 38: 227-239
[6] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, 44: 4565-4579
[7] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999, 99: 2777-2795
[8] Song H, Kaiser J T, Barton J K. Nat. Chem., 2012, 4: 615-620
[9] Niyazi H, Hall J P, O’Sullivan K, Winter G, Sorensen T, Kelly J M, Cardin C J. Nat. Chem., 2012, 4: 621-628
[10] Hall J P, O’Sullivan K, Naseer A, Smith J A, Kelly J M, Cardin C J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 17610-17614
[11] Martin R G, Jim A T. Chem. Soc. Rev., 2012, 41: 3179-3192
[12] Fernandez-Moreira V, Thorp-Grreenwood F L, Coggan M P. Chem. Commun., 2010, 46: 186-202
[13] Puckett C A, Barton J K. J. Am. Chem. Soc., 2007, 129: 46-47
[14] Gill M R, Garcia-Lara J, Foster S J, Smythe C, Battaglia G, Thomas J A. Nat. Chem., 2009, 1: 662-667
[15] Tian X, Gill M R, Cantón I, Thomas J A, Battaglia G. ChemBioChem., 2011, 12: 548-551
[16] Matson M, Svensson F R, Norden B, Lincoln P. J. Phys. Chem. B, 2011, 115: 1706-1711
[17] Svensson F R, Abrahamsson M, Stromberg N, Ewing A G, Lincoln P J. Phys. Chem. Lett., 2011, 2: 397-401
[18] Musatkina E, Amouri H, Lamoureux M, Chepurnykh T, Cordier C. J. Inorg. Biochem., 2007, 101: 1086-1089
[19] Siddik Z H. Oncogene, 2003, 22: 7265-7279
[20] Kartalou M, Essigmann J M. Mutat. Res., 2001, 478: 1-21
[21] Donahue B A, Augot M, Bellon S F, Treiber D K, Toney J H, Lippard S J, Essigmann J M. Biochemistry, 1990, 29: 5872-5880
[22] Fink D, Aebi S, Howell S B. Clin. Cancer Res., 1998, 4: 1-6
[23] Chaney S G, Vaisman A J. Inorg. Biochem., 1999, 77: 71-81
[24] Jung Y, Lippard S J. Chem. Rev., 2007, 107: 1387-1407
[25] Bergamo A, Sava G. Dalton Trans., 2007, 13: 1267-1272
[26] Shi S, Zhao J, Geng X T, Yao T M, Huang H L, Liu T L, Zheng L F, Li Z H, Yang D J, Ji L N. Dalton Trans., 2010, 39: 2490-2493
[27] Malonne H, Atassi G. Anti-Cancer Drugs, 1997, 8: 811-822
[28] Vashisht G Y N, Jayaraju D, Kondapi A K. Biochemistry, 1999, 38: 4382-4388
[29] Vashisht G Y N, Kondapi A K. J. Biosci., 2001, 26: 271-276
[30] Gao F, Chao H, Zhou F, Chen X, Wei Y F, Ji L N. J. Inorg. Biochem., 2008, 102: 1050-1059
[31] 王夔(Wang K), 杨晓改(Yang X G). 化学进展(Progress in Chemistry), 2009, 21(5): 803-818
[32] 杨晓改(Yang X G), 王琴(Wang Q), 刘竟成(Liu J C), 王夔(Wang K). 化学进展(Progress in Chemistry), 2009, 21(5): 890-895
[33] Baylin S B, Jones P A. Nat. Rev. Cancer, 2011, 11: 726-734
[34] Mark A D, Tony K. Cell, 2012, 150: 12-27
[35] Arita A, Costa M. Metallomics, 2009, 1: 222-228
[36] Govindarajan B, Klafter R, Miller M, Mansur C, Mizesko M, Bai X, LaMotagne K, Arbiser J. Mol. Med., 2002, 8: 1-8
[37] Huang D, Zhang Y, Qi Y, Chen C. Toxicol. Lett., 2008, 179: 43-47
[38] Takiguchi M, Achanzar W E, Qu W. Exp. Cell Res., 2003, 286: 355-365
[39] Wu R B, Wang S L, Zhou N J, Cao Z X, Zhang Y K. J. Am. Chem. Soc., 2010, 132: 9471-9479
[40] Kruidenier L, Chung C W, Cheng Z J, Liddle J, Che K H, Joberty G, Bantscheff M. Nature, 2012, 488: 404-408
[41] Sebova K, Fridrichova I. Anti-Cancer Drugs, 2010, 21: 565-577
[42] Widom J, Baldwin R L. J. Mol. Biol., 1980, 144: 431-453
[43] Sun B, Guan J X, Xu L, Yu B L, Jiang L, Kou J F, Wang L, Ding X D, Chao H, Ji L N. Inorg. Chem., 2009, 48: 4637-4639
[44] Dong X D, Wang X Y, He Y F, Yu Z, Lin M X, Zhang C L, Wang J, Song Y J, Zhang Y M, Liu Z P, Li Y Z, Guo Z J. Chem. Eur. J., 2010, 16: 14181-14189
[45] Conwell C C, Vilfan I D, Hud N V. Proc. Natl. Acad. Sci. USA, 2003, 100: 9296-9301
[46] Segura J G, Prieto M J, Bardia M F, Solans X, Moreno V. Inorg. Chem., 2006, 45: 10031-10033
[47] Sharma S, Singh S K, Chandra M, Pandey D S. J. Inorg. Biochem., 2005, 99: 458-466
[48] Singh S K, Joshi S, Singh A R, Saxena J K, Pandey D S. Inorg. Chem., 2007, 46: 10869-10876
[49] Meng X G, Liu L, Zhou C S, Wang L, Liu C L. Inorg. Chem., 2008, 47: 6572-6574
[50] Liu L, Zhang H, Meng X G, Yin J, Li D F, Liu C L. Biomaterials, 2010, 31: 1380-1391
[51] Jiang R W, Yin J, Hu S, Meng X G, Liu C L. Curr. Drug Deliv., 2013, 10: 122-133
[52] Yin J, Meng X G, Zhang S B, Zhang D, Wang L, Liu C L. Biomaterials, 2012, 33: 7884-7894
[53] Meng X G, Liu L, Zhang H, Luo Y, Liu C. Dalton Trans., 2011, 33: 12846-12855
[54] 殷俊(Yin J). 华中师范大学博士论文(Doctoral Dissertation of Central China Normal University ), 2011
[55] Li J, Zhu Y, Hazeldine S T, Firestine S M, Oupick Dy' D, Biomacromolecules, 2012, 13: 3220-3227
[56] Liu G, Choi K Y, Bhirde A, Swierczewska M, Yin J, Lee S W, Park J H, Hong J I, Xie J, Niu G, Kiesewetter D O, Lee S, Chen X Y. Angew. Chem. Int. Ed., 2012, 51: 445-449

[1] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[2] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[3] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[4] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[5] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[6] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[7] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[8] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[9] Deng Yunpan, Yang Bo, Yu Gang, Zhuo Qiongfang, Deng Shubo, Zhang Hong. Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes [J]. Progress in Chemistry, 2016, 28(4): 564-576.
[10] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[11] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[12] Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei. Study on Third-Order Nonlinear Optical Properties of Functional Complexes [J]. Progress in Chemistry, 2013, 25(10): 1625-1630.
[13] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[14] Ma Xuelu, Lei Ming. Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes [J]. Progress in Chemistry, 2013, 25(08): 1325-1333.
[15] Wang Zhipeng, Zhang Yan, Wang Xiaoqing*. Models in Metalloenzymes for Dioxygen Activation [J]. Progress in Chemistry, 2013, 25(06): 915-926.