中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Latest Advances of Microbial Production of 2,3-Butanediol

Fu Jing, Wang Meng, Liu Weixi, Chen Tao   

  1. Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 979 ) Cited
Export

EndNote

Ris

BibTeX

As important liquid fuel and chemical raw materials, 2,3-butanediol and its derivatives have broad industrial application prospects. Economical and efficient 2,3-butanediol microbial production has significant impetus to the low-carbon and circular economy development of China. Focusing on the latest achievements in the microbial production of 2,3-butanediol, this review summarizes the hot spots of the researchers’ attentions nowadays, which can be divided into four parts: identification of the key genes and enzymes involved in the 2,3-butanediol metabolic pathway, development of new strains and metabolic engineered strains for high yield or chiral 2,3-butanediol production, strategies for fermentation optimization such as simultaneous saccharification and fermentation, and technology improvement for combining process involved in 2,3-butanediol recovering processing. These achievements in the last three years are classified and discussed with state-of-art views. At last, guidelines for future studies are also proposed. It is pointed out that future research should focus on new strains, new genes and enzymes, new metabolic pathways, new cheap and renewable resources for substrate, and new technology for fermentation and separation. There’s no doubt that metabolic engineered class Ⅰ strains, which can utilize cost-effective and renewable substrates to lower the raw materials cost producing chiral 2,3-butanediol with high yield and productivity, should be favored. Besides, new technology in separation and purification process must be developed and improved to lower the cost of downstream processing. Contents
1 Introduction
2 Identification of the key genes and enzymes involved in the metabolic pathway of 2,3-butanediol
2.1 Metabolic pathway analysis
2.2 Identification of the key genes and enzymes
3 Strains and their improvements
3.1 Major microorganisms producing 2,3-butanediol
3.2 Metabolic engineering of the microorganisms for high yield and productivity
3.3 Construction of the metabolic engineered microorganisms for single isomer production
4 Strategy of optimization for fermentation
4.1 Parameter optimization of culture environment
4.2 Economic fermentation substrates
4.3 Simultaneous saccharification and fermentation
4.4 Co-culture
5 Optimization of separation and purification process
6 Conclusion and outlook

CLC Number: 

[1] Jarboe L R, Zhang X, Wang X, Moore J C, Shanmugam K, Ingram L O. Journal of Biomedicine and Biotechnology, 2010, 2010: art. no. 761042
[2] Dellomonaco C, Fava F, Gonzalez R. Microb. Cell Fact., 2010, 9(1): art. no. 3
[3] Celińska E, Grajek W. Biotechnol. Adv., 2009, 27(6): 715-725
[4] 戴建英(Dai J Y), 孙亚琴(Sun Y Q), 孙丽慧(Sun L H), 李丹(Li D), 董悦生(Dong R S), 修志龙(Xiu Z L). 过程工程学报(The Chinese Journal of Process Engineering), 2010, 10(1): 200-208
[5] 纪晓俊(Ji X J), 聂志奎(Nie J K), 黎志勇(Li Z Y), 高振(Gao Z), 黄和(Huang H). 化学进展(Process in Chemistry), 2010, 22(12): 2450-2461
[6] Ji X J, Huang H, Ouyang P K. Biotechnol. Adv., 2011, doi: 10.1016/j. biotechadv. 2011, 29(3): 351-364
[7] Magee R J, Kosaric N. Adv. Appl. Microbiol, 1987, 32(89): 161
[8] González E, Fernández M R, Marco D, Calam E, Sumoy L, Parés X, Dequin S, Biosca J A. Appl. Environ. Microb., 2010, 76(3): 670-679
[9] Rao B, Zhang L Y, Sun J, Su G, Wei D, Chu J, Zhu J, Shen Y. Appl. Microbiol. Biot., 2012, 93(5): 2147-2159
[10] Yu B, Sun J, Bommareddy R R, Song L, Zeng A P. Appl. Environ. Microb., 2011, 77(12): 4230-4233
[11] Zhang G L, Wang C W, Li C. Biotechnol. Lett., 2012, 34(8): 1519-1523
[12] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(10): 2736-2737
[13] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(9): 2371-2372
[14] Xu Y, Wang A, Tao F, Su F, Tang H, Ma C, Xu P. J. Bacteriol., 2012, 194(4): 897-898
[15] Cho J H, Rathnasingh C, Song H, Chung B W, Lee H J, Seung D. Bioprocess and Biosystems Engineering, 2012, 35(7): 1081-1088
[16] Köpke M, Mihalcea C, Liew F M, Tizard J H, Ali M S, Conolly J J, Al-Sinawi B, Simpson S D. Appl. Environ. Microb., 2011, 77(15): 5467-5475
[17] Metsoviti M, Paramithiotis S, Drosinos E, Galiotou-Panayotou M, Nychas G, AnPing Z, Papanikolaou S. Engineering in Life Sciences, 2012, 12(1): 57-68
[18] Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P. Appl. Microbiol. Biot., 2009, 82(1): 49-57
[19] Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J. Bioresource. Technol., 2010, 101(6): 1961-1967
[20] Ji X J, Huang H, Zhu J G, Ren L J, Nie Z K, Du J, Li S. Appl. Microbiol. Biot., 2010, 85(6): 1751-1758
[21] Gaspar P, Neves A R, Gasson M J, Shearman C A, Santos H. Appl. Environ. Microb., 2011, 77(19): 6826-6835
[22] Jung MY, Ng C Y, Song H, Lee J, Oh M K. Appl. Microbiol. Biot., 2012, 95(2):461-469
[23] Wang Q, Chen T, Zhao X, Chamu J. Biotechnol. Bioeng., 2012, 109(7): 1610-1621
[24] Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K-i, Bisaria V S, Kondo A. Appl. Microbiol. Biot., 2012, 94(3): 651-658
[25] Ji X J, Nie Z K, Huang H, Ren L J, Peng C, Ouyang P K. Appl. Microbiol. Biot., 2011, 89(4): 1119-1125
[26] Zhang L, Sun J a, Hao Y, Zhu J, Chu J, Wei D, Shen Y. J. Ind. Microbiol. Biot, 2010, 37(8): 857-862
[27] Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P. Bioresource. Technol., 2011, 115:111-116
[28] Yan Y, Lee C C, Liao J C. Organic & Biomolecular Chemistry, 2009, 7(19): 3914-3917
[29] Nielsen D R, Yoon S H, Yuan C J, Prather K L J. Biotechnology Journal, 2010, 5(3): 274-284
[30] Li Z J, Jian J, Wei X X, Shen X W, Chen G Q. Appl. Microbiol. Biot., 2010, 87(6): 2001-2009
[31] Siemerink M A J, Kuit W, Lopez Contreras A M, Eggink G, van der Oost J, Kengen S W M. Appl. Environ. Microb., 2011, 77(8): 2582-2588
[32] Stephanopoulos G N, Aristidou AAN. 赵学明(Zhao X M), 白冬梅(Bai D M)译. 代谢工程--原理与方法(Metabolic engineering-Principles and Methodologise). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.182-240
[33] Lu M, Lee S, Kim B, Park C, Oh M, Park K, Lee S, Lee J. J. Microbiol. Biotechn, 2012, 22(5): 659-667
[34] Petrov K, Petrova P. Appl. Microbiol. Biot., 2010, 87(3): 943-949
[35] Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P. Appl. Microbiol. Biot., 2010, 87(3): 965-970
[36] Lee S, Kim B, Park K, Um Y, Lee J. Appl. Biochem. Biotech, 2012, 166(7):1801-1813
[37] Jiang L, Fang Z, Guo F, Yang L. Bioresource. Technol., 2012, 107(3): 405-410
[38] Cheng K K, Liu Q, Zhang J A, Li J P, Xu J M, Wang G H. Process. Biochem., 2010, 45(4): 613-616
[39] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(10): 2736-2737
[40] Zhao X, Song Y, Liu D. Enzyme Microb. Tech., 2011, 49(4): 413-419
[41] Sun L H, Wang X D, Dai J Y, Xiu Z L. Appl. Microbiol. Biot., 2009, 82(5): 847-852
[42] Liu Z, Qin J, Gao C, Hua D, Ma C, Li L, Wang Y, Xu P. Bioresource Technol., 2011, 102(22): 10741-10744
[43] Xiu Z L, Zeng A P. Appl. Microbiol. Biot., 2008, 78(6): 917-926
[44] Li Z, Teng H, Xiu Z. Process Biochem., 2010, 45(5): 731-737
[45] Dai J, Zhang Y, Xiu Z. Chinese J. Chem. Eng., 2011, 19(4): 682-686
[46] Anvari M, Khayati G. J. Ind. Microbiol. Biot, 2009, 36(2): 313-317
[47] Shao P, Kumar A. The Canadian Journal of Chemical Engineering, 2012, doi: 10.1002/cjce. 20698
[48] Li Y, Wu Y, Zhu J, Liu J. Biotechnology and Bioprocess Engineering, 2012, 17(2): 337-345
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[3] Wang Baiyun, Wang Xiaoyue, Wang Zhiwen, Chen Tao, Zhao Xueming. Redox Cofactor Metabolic Engineering with Escherichia coli [J]. Progress in Chemistry, 2014, 26(09): 1609-1618.
[4] Li Yuda, Wang Xunchang, Lv Renliang, Wang Feng. Non-Covalent Separation of Optically Active Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2014, 26(08): 1361-1368.
[5] Wang Zhiwen Ma Xianghui Chen Xun Zhao Xueming Chen Tao. Current Methods and Advances in Microbial Metabolomics [J]. Progress in Chemistry, 2010, 22(01): 163-172.
[6] Zhenming Chen1, Jinhua Liu 2, Tao, Junhua2,3**. Biocatalysis for Green Chemistry and Drug Development [J]. Progress in Chemistry, 2007, 19(012): 1919-1927.