中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Applications of Transition Metallates in Catalysis

Wang Sasa1, Sun Hui2, Chen Shengjie1, You Hongxing1, Liu Ye* 1   

  1. 1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 20006;
    2. Kunshan Research Institute of Chemical Co., Ltd, Kunshan 215337, China
  • Received: Revised: Online: Published:
PDF ( 1660 ) Cited
Export

EndNote

Ris

BibTeX

Transition metallates have attracted much attention as one important kind of transition metal containing catalysts with the advantages of low cost, commercial availability, less toxicity, and good stability. Metallate is the name given to any complex anion containing a metal ligated to several atoms or small groups. Typically, the metal will be one of the transition elements and the ligand will be oxygen (oxometallate: WO42-, PMo12O403-, etc.), other chalcogenide (thiometallate: MoS42-, etc.), or halogen (halometallate: PtCl62-, TiF62-, etc.). The properties of metallates can be controlled by transition metal substitution and the counter-cations alteration at molecular levels. However, most of the research on applications of metallates in catalysis is focused on oxometallates. In this review, besides oxometallates, the other kinds of transition metallates such as thiometallates, cyanometallates, and halometallates as the efficient catalysts in catalytic reactions are also summarized. Furthermore, the use of metallates in combination with ionic liquids is emphasized herein, which is regarded as a promising method to guarantee the recyclability of metallate catalysts. Contents
1 Introduction
2 Application of transition metallates in catalysis
2.1 Application of transition metallates as catalysts in oxidations
2.2 Application of transition metallates in acid catalyzed reactions
2.3 Application of transition metallates as catalysts in other reactions
3 Conclusion and outlook

CLC Number: 

[1] 牛景扬(Niu J Y), 王敬平(Wang J P). 杂多化合物概论(Introduction of Heteropoly Compound). 开封: 河南大学出版社(Kaifeng: the Press of Henan University), 2000. 365-365
[2] 孙月霞(Sun Y X), 张志斌(Zhang Z B), 孙琪(Sun Q), 许岩(Xu Y). 无 机 化 学 学 报(Chinese Journal of Inorganic Chemistry), 2011, 27(3): 556-560
[3] Al-Zahrani S M, Jibril B Y, Abasaeed A E. J. Mol. Catal. A: Chem., 2001, 175: 259-265
[4] Nowinska K, Sopa M, Waclaw A, Szuba D. Appl. Catal. A: Gen., 2002, 225: 141-151
[5] Shul'pina L S, Kirillova M V, Pombeiro A J L, Shul'pin G B. Tetrahedron, 2009, 65: 2424-2429
[6] Gresley N M, Griffith W P, Laemmel A C, Nogueira H I S, Parkin B C. J. Mol. Catal. A: Chem., 1997, 117: 185-198
[7] Gao J, Chen Y, Han B, Feng Z, Li C, Zhou N, Gao S, Xi Z. J. Mol. Catal. A: Chem., 2004, 210: 197-204
[8] Weng Z H, Liao G X, Wang J Y, Jian X G. Catal. Commun., 2007, 8: 1493-1496
[9] Weng Z, Wang J, Jian X. Catal. Commun., 2008, 9: 1688-1691
[10] Zhang S, Zhao G, Gao S, Xi Z, Xu J. J. Mol. Catal. A: Chem., 2008, 289: 22-27
[11] Chhikara B S, Chandra R, Tandon V. J. Catal., 2005, 230: 436-439
[12] Noyori R, Aoki M, Sato K. Chem. Commun., 2003, 1977-1986
[13] Venturello C, D'Aloisio R. J. Org. Chem., 1988, 53: 1553-1557
[14] Venturello C, D'Aloisio R, Bart J C J, Ricci M. J. Mol. Catal., 1985, 32: 107-110
[15] Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J. Org. Chem., 1988, 53: 3587-3593
[16] Matoba Y, Inoue H, Akagi J I, Okabayashi T, Ishii Y, Ogawa M. Synth. Commun., 1984, 14: 865-873
[17] Grigoropoulou G, Clark J H. Tetrahedron Lett., 2006, 47: 4461-4463
[18] Hill C L. Chem. Rev., 1998, 98: 1-2
[19] Hill C L, Prosser-McCartha C M. Coord. Chem. Rev., 1995, 143: 407-455
[20] Gao F X, Yamase T, Suzuki H. J. Mol. Catal. A: Chem., 2002, 180: 97-108
[21] Ishikawa E, Yamase T. J. Mol. Catal. A: Chem., 1999, 142: 61-76
[22] Kholdeeva O A, Maksimov G M, Maksimovskaya R I, Kovaleva L A, Fedotov M A. React. Kinet. Catal. Lett., 1999, 66: 311-317
[23] Kholdeeva O A, Maksimov G M, Maksimovskaya R I, Kovaleva L A, Fedotov M A, Grigoriev V A, Hill C L. Inorg. Chem., 2000, 39: 3828-3837
[24] Kholdeeva O A, Maksimovskaya R I, Maksimov G M, Kovaleva L A. Kinet. Catal., 2001, 42: 217-222
[25] Kato C N, Negishi S, Yoshida K, Hayashi K, Nomiya K. Appl. Catal. A: Gen., 2005, 292: 97-104
[26] Sun H, Harms K, Sundermeyer J. J. Am. Chem. Soc., 2004, 126: 9550-9551
[27] Zhang P, Gong Y, Lv Y, Guo Y, Wang Y, Wang C, Li H. Chem. Commun., 2012, 2334-2336
[28] Lapisardi G, Chiker F, Launay F, Nogier J P, Bonardet J L. Catal. Commun., 2004, 5: 277-281
[29] Lee S O, Raja R, Harris K D M, Thomas J M, Johnson B F G, Sankar G. Angew. Chem. Int. Ed., 2003, 42: 1520-1523
[30] Cheng C Y, Lin K J, Prasad M R, Fu S J, Chang S Y, Shyu S G, Sheu H S, Chen C H, Chuang C H, Lin M T. Catal. Commun., 2007, 8: 1060-1064
[31] Usui Y, Sato K. Green Chem., 2003, 5: 373-375
[32] Ren S, Xie Z, Cao L, Xie X, Qin G, Wang J. Catal. Commun., 2009, 10: 464-467
[33] Vennat M, Herson P, Brégeault J M, Shul'pin G B. Eur. J. Inorg. Chem., 2003, 908-917
[34] Schmidt A K C, Stark C B W. Org. Lett., 2011, 13: 4164-4167
[35] Schmidt A K C, Stark C B W. Org. Lett., 2011, 13: 5788-5791
[36] Sato K, Hyodo M, Aoki M, Zheng X Q, Noyori R. Tetrahedron, 2001, 57: 2469-2476
[37] Karimi B, Ghoreishi-Nezhad M, Clark J H. Org. Lett., 2005, 7: 625-628
[38] Zhu W, Zhu G, Li H, Chao Y, Chang Y, Chen G, Han C. J. Mol. Catal. A: Chem., 2011, 347: 8-14
[39] Sels B, Vos D D, Buntinx M, Pierard F, Mesmaeker A K, Jacobs P. Nature, 1999, 400: 855-857
[40] Conte V, Furia F, Moro S. Tetrahedron Lett., 1996, 37: 8609-8612
[41] Hiskia A, Mylonas A, Papaconstantinou E. Chem. Soc. Rev., 2001, 30: 62-69
[42] Maldotti A, Molinari A, Amadelli R. Chem. Rev., 2002, 102: 3811-3836
[43] Mizuno N, Misono M. Chem. Rev., 1998, 98: 199-218
[44] Molinari A, Varani G, Polo E, Vaccari S, Maldotti A. J. Mol. Catal. A: Chem., 2007, 262: 156-163
[45] Moriuchi T, Yamaguchi M, Kikushima K, Hirao T. Tetrahedron Lett., 2007, 48: 2667-2670
[46] Kikushima K, Moriuchi T, Hirao T. Chem. Asian J., 2009, 4: 1213-1216
[47] Kikushima K, Moriuchi T, Hirao T. Tetrahedron Lett., 2010, 51: 340-342.
[48] Kikushima K, Moriuchi T, Hirao T. Tetrahedron, 2010, 66: 6906-6911
[49] Roy S, Bhar S. Green Chem. Lett. Rev., 2010, 3: 341-347
[50] Zhu L F, Guo B, Tang D Y, Hu X K, LiG Y, Hu C W. J. Catal., 2007, 245: 446-455
[51] Yamada T, Sakakura A, Sakaguchi S, Obora Y, Ishii Y. New J. Chem., 2008, 32: 738-742
[52] Murahashi S, Mitsui H, Shiota T, Tsuda T, Watanabe S. J. Org. Chem., 1990, 55: 1736-1744
[53] Murahashi S I, Imada Y, Ohtake H. J. Org. Chem., 1994, 59: 6170-6172
[54] Anandan S, Ryu S Y, Cho W, Yoon M. J. Mol. Catal. A: Chem., 2003, 195: 201-208
[55] Arslan-Alaton I, Ferry J L. Dyes Pigments, 2002, 54: 25-36
[56] Bai B, Zhao J, Feng X. Mater. Lett., 2003, 57: 3914-3918
[57] Jiang C J, Guo Y H, Hu C W, Wang C G, Li D F. Mater. Res. Bull., 2004, 39: 251-261
[58] Yang Y, Guo Y, Hu C, Wang E. Appl. Catal. A: Gen., 2003, 252: 305-314
[59] Yang Y, Wu Q, Guo Y, Hu C, Wang E. J. Mol. Catal. A: Chem., 2005, 225: 203-212
[60] Li L, Wu Q, Guo Y, Hu C. Micropor. Mesopor. Mater., 2005, 87: 1-9
[61] Deng Q, Zhou W, Li X, Peng Z, Jiang S, Yue M, Cai T. J. Mol. Catal. A: Chem., 2007, 262: 149-155
[62] Troupis A, Hiskia A, Papaconstantinou E. Appl. Catal. B: Environ., 2004, 52: 41-48
[63] Misono M, Nojiri N. Appl. Catal., 1990, 64: 1-30
[64] Pesaresi L, Brown D R, Lee A F, Montero J M, Williams H, Wilson K. Appl. Catal. A: Gen., 2009, 360: 50-58
[65] Kozhevnikov I V. Chem. Rev., 1998, 98: 171-198
[66] Kozhevnikov I V. J. Mol. Catal. A: Chem., 2007, 262: 86-92
[67] Okumura K, Yamashita K, Hirano M, Niwa M. J. Catal., 2005, 234: 300-307
[68] Devassy B M, Halligudi S B. J. Catal., 2005, 236: 313-323
[69] Siddiqui M R H, Holmes S, He H, Smith W, Coker E N, Atkins M P, Kozhevnikov I V. Catal. Lett., 2000, 66: 53-57
[70] Kozhevnikov I V, Holmes S, Siddiqui M R H. Appl. Catal. A: Gen., 2001, 214: 47-58
[71] Kozhevnikova E F, Rafiee E, Kozhevnikov I V. Appl. Catal. A: Gen., 2004, 260: 25-34
[72] DennyF, Scott J, Chiang K, Teoh W Y, Amal R. J. Mol. Catal. A: Chem., 2007, 263: 93-102
[73] Hetterley R D, Kozhevnikova E F, Kozhevnikov I V. Chem. Commun., 2006: 782-784
[74] Welton T. Chem. Rev., 1999, 99: 2071-2084
[75] Deetlefs M, Raubenheimer H G, Esterhuysen M W. Catal. Today, 2002, 72: 29-41
[76] Dingwall L D, Corcoran C M, Lee A F, Olivi L, Lynam J M, Wilson K, Catal. Commun., 2008, 10: 53-56
[77] Dullius J E L, Suarez P A Z, Einloft S, Souza R F, Dupont J, Fischer J, Cian A D. Organometallics, 1998, 17: 815-819
[78] Fei Z, Zhao D, Pieraccini D, Ang W H, Geldbach T J, Scopelliti R, Chiappe C, Dyson P J. Organometallics, 2007, 26: 1588-1598
[79] Bica K, Gaertner P. Org. Lett., 2006, 8: 733-735
[80] Bica K, Gaertner P. Eur. J. Org. Chem., 2008, 3453-3456
[81] Sasaki T, Zhong C, Tada M, Iwasawa Y. Chem. Commun., 2005, 2506-2508
[82] Sasaki T, Tada M, Zhong C, Kume T, Iwasawa Y. J. Mol. Catal. A: Chem., 2008, 279: 200-209
[83] Lee C W. Tetrahedron Lett., 1999, 40: 2461-2464
[84] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4: 24-26
[85] Brown R J C, Dyson P J, Ellis D J, Welton T. Chem. Commun., 2001, 1862-1863
[86] Dengler J E, Doroodian A, Rieger B. J. Organomet. Chem., 2011, 696: 3831-3835
[87] Cramer S P, Hodgson K O, Gillum W O, Mortenson L E. J. Am. Chem. Soc., 1978, 100: 3398-3407
[88] Liang K S, Bernholc J, Pan W H, Hughes G J, Stiefel E I. Inorg. Chem., 1987, 26: 1422-1425
[89] Alonso G, Berhault G, Aguilar A, Collins V, Ornelas C, Fuentes S, Chianelli R R. J. Catal., 2002, 208: 359-369
[90] Alonso G, Siadati M H, Berhault G, Aguilar A, Fuentes S, Chianelli R R. Appl. Catal. A: Gen., 2004, 263: 109-117
[91] Romero-Rivera R, Valle M D, Alonso G, Flores E, Castillón F, Fuentes S, Cruz-Reyes J. Catal. Today, 2008, 130: 354-360
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.