中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Separation of CO2 with Supported Ionic Liquid Membrane

Duan Yongchao, Wu Yanhui, Yu Shikun, Li Dongming   

  1. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1141 ) Cited
Export

EndNote

Ris

BibTeX

Supported liquid membrane (SLM) is a kind of important membrane technique which has applications in many fields such as hydrometallurgy, biotechnology, gas separation, etc. A thorough summary of recent developments of supported liquid membranes used in the field of CO2 separation is provided. In this paper, two kinds of supported liquid membranes with different membrane phases, conventional carriers supported liquid membranes and supported ionic liquid membranes (SILMs), are introduced respectively. And the limits of conventional carriers supported liquid membrane are pointed out. The transport mechanism of gas in the SILMs is analyzed firstly. Then the progress of different SILMs are discussed intensively. For conventional ionic liquid membranes, the discussions focus on how the structure and content of ionic liquid as well as the support material influence the membrane performance. For task-specific ionic liquid membrane, different methods of functionalization and the CO2 permeability, selectivity and the liquid membrane stability of the corresponding supported task specific ionic liquid membranes are analyzed. Two kinds of new modification methods for supported ionic liquid membrane, poly (ionic liquid) membrane and supported gelled ionic liquid membrane, are also introduced. On this basis, the possible prospects of supported ionic liquid in the future are given. Contents
1 Introduction
2 Supported liquid membrane with conventional solvent as membrane phase
3 Supported ionic liquid membrane
3.1 Transport mechanism of gas in supported ionic liquid membrane
3.2 Conventional ionic liquid as membrane phase
3.3 Task-specific ionic liquid as membrane phase
4 New progress in supported ionic liquid membrane
4.1 Poly(ionic liquid) membrane
4.2 Gelled ionic liquid as membrane phase
5 Conclusions and outlook

CLC Number: 

[1] Ward W J, Robb W L. Science, 1967, 156: 1481-1481
[2] Teramoto M, Nakai K, Ohnishi N, Huang Q F, Watari T, Matsuyama H. Ind.Eng.Chem.Res., 1996, 35: 538-545
[3] Al Marzouqi M H, Abdulkarim M A, Marzouk S A, El-Naas M H, Hasanain H M. Ind.Eng.Chem.Res., 2005, 44: 9273-9278
[4] Chen H, Kovvali A S, Majumdar S, Sirkar K K. Ind. Eng. Chem. Res., 1999, 38: 3489-3498
[5] Kovvali A S, Sirkar K K. Ind. Eng. Chem. Res., 2002, 41: 2287-2295
[6] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28-29
[7] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126(16): 5300-5308
[8] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109: 6366-6374
[9] Scovazzo P, Kieft J, Finan D A, Koval C, DuBois D, Kieft J, Noble R D. J. Membr. Sci., 2004, 238: 57-63
[10] Stern S A. J. Membr. Sci., 1994, 94(1): 1-65
[11] Neves L A, Nemestothy N, Alves V D, Cserjesi P, Belafi-Bakob K, Coelhoso I M. Desalination, 2009, 240: 311-315
[12] Park Y I, Kim B S, Byun Y H, Lee S H, Lee E W, Lee J M. Desalination, 2009, 236: 342-348
[13] Fortunato R, González M J, Kubasiewicz M, Luque S, lvarez J R, Afonso C A M, Coelhoso I M, Crespo J G. J. Membr. Sci., 2005, 249: 153-162
[14] Fortunato R, Afonso C A M, Benavente J, Rodriguez-Castellón E, Crespo J G. J. Membr. Sci., 2005, 256: 216-223
[15] Neves L A, Crespo J G, Coelhoso I M. J. Membr. Sci., 2010, 357: 160-170
[16] Zhao W, He G H, Zhang L L, Ju J, Dou H, Nie F, Li C N, Liu H J. J.Membr.Sci., 2010, 350: 279-285
[17] Myers C, Pennline H, Luebke D, Ilconich J, Dixon J K, Maginn E J, Brennecke J F. J. Membr. Sci., 2008, 322: 28-31
[18] Ilconich J, Myers C, Pennline H, Luebke D. J.Membr.Sci., 2007, 298: 41-47
[19] Jiang Y Y, Wu Y T, Wang W T, Li L, Zhou Z, Zhang Z B. Chinese J. Chem. Eng., 2009, 17(4): 594-601
[20] Lee S H, Kim B S, Lee E W, Park W I, Lee J M. Desalination, 2006, 200: 21-22
[21] Yoo S, Wona J, Kang S J, Kang Y S, Nagase S. J. Membr. Sci., 2010, 363: 72-79
[22] Baltus R E, Counce R M, Culbertson B H, Luo H M, DePaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2009, 40 (1): 525-541
[23] Gan Q, Rooney D, Xue M L, Thompson G, Zou Y R. J. Membr. Sci., 2006, 280: 948-956
[24] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124 (6): 926-927
[25] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314: 1-4
[26] Bara J E, Gabriel C J, Carlisle T K, Camper D E, Finotello A, Gina D L, Noble R D. Chem. Eng. J., 2009, 147: 43-50
[27] Mahurin S M, Lee J S, Baker G A, Luo H M, Dai S. J. Membr. Sci., 2010, 353: 177-183
[28] 侯亚伟(Hou Y W).华东师范大学博士学位论文(Doctoral Dissertation of East China Normal University), 2009
[29] Muldoon M J, Aki A N, Anderson J L, Dixon J K, Brennecke J F. J. Phys. Chem. B, 2007, 111: 9001-9009
[30] Carlisle T K, Bara J E, Gabriel C J, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2008, 47: 7005-7012
[31] Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc., 2005, 127: 2398-2399
[32] Gurkan B E, Fuente J C, Mindrup E M, Ficke L E, Goodrich B F, Price E A, Schneider W F, Brennecke J F. J. Am. Chem. Soc., 2010, 132: 2116-2117
[33] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lv X M. Chem. Eur. J., 2006, 12: 4021-4026
[34] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46: 5397-5404
[35] Carlisle T K, Bara J E, Lafrate A L, Gina D L, Noble R D. J. Membr. Sci., 2010, 359: 37-43
[36] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y F, Gina D L, Noble R D. J. Membr. Sci., 2010, 350: 117-123
[37] Hudiono Y C, Carlisle T K, LaFrate A L, Gin D L, Noble R D. J. Membr. Sci., 2011, 370: 141-148
[38] Neplenbroek A M, Bargeman D, Smolders C A. J. Membr. Sci., 1992, 67: 149-165
[39] 张锁江(Zhang S J),吕兴梅(Lü X H). 离子液体从基础研究到工业应用(Ionic Liquid-From Basic Research to Industrial Application). 北京: 科学出版社(Beijing: Science Press), 2006
[40] Vioux A, Viau L, Volland S, Bideau J L. C. R. Chim., 2010, 13: 242-255
[41] Bideau J L, Viau L, Vioux A. Chemical Society Reviews, 2011, 40: 907-925
[42] 谭磊(Tan L).华中科技大学博士学位论文(Doctoral Dissertation of Huazhong University of Science and Technology),2009
[43] Fukushima T, Kosak A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aid T. Science, 2003, 300: 2072-2074
[44] Firestone M A, Dzielawa J A, Zapol P, Curtiss L A, Seifert S, Dietz M L. Langmuir, 2002, 18 (20): 7258-7260
[45] Hanabusa K, Fukui H, Suzuki M, Shirai H.Langmuir, 2005, 21: 10383-10390
[46] Ueno K, Hata K, Katakabe T, Kondoh M, Watanabe M. J.Phys.Chem.B, 2008, 112: 9013-9019
[47] Voss B A, Bara J E, Gin D L, Noble R D. Chem. Mater., 2009, 21 (14): 3027-3029
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[4] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[5] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[6] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[10] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[13] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[14] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[15] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.