中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (07): 1388-1397 Previous Articles   Next Articles

• Review •

Free Radical Photochemistry of Dissolved Organic Matter in Natural Water

Tai Chao1,2, Li Yanbin2, Yin Yongguang2,3, Cai Yong2, Jiang Guibin3   

  1. 1. Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China;
    2. Department of Chemistry and Biochemistry, Florida International University, Miami USA 33199;
    3. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100075, China
  • Received: Revised: Online: Published:
PDF ( 1257 ) Cited
Export

EndNote

Ris

BibTeX

Dissolved organic matter (DOM) exists widely in the natural water. It is one of the largest active pools of organic carbon on earth and hence plays an important role in the global carbon cycling. As it contains a large number of chromophores, such as benzene ring, carboxyl, hydroxy, carbonyl, etc., it can adsorb sunlight at certain wavelength regions of the spectrum. A variety of reactive free radicals, such as hydroxyl radicals, singlet oxygen, and hydrated electron, could be generated during this process. These reactive free radicals could play an important role in the photo-transformation and photo-degradation of contaminants in the natural water. In different natural water, the generation of reactive free radicals is very different, resulting the mechanism and pathway of photo-transformation of various contaminats in natural water. This paper reviews the DOM-mediated generating pathways of major reactive radicals, including hydroxyl radicals, singlet oxygen, hydrated electron and excited triplet states of the CDOM. Then influences of them on the photo-transformation and photo-degradation of various contaminants, inculding inorganic ion, methylmercury, polyaromatic hydrocarbon, phenols, and pesticides, etc., in the natural water are discussed. The necessary works in the future research are also briefly outlined. Contents
1 Introduction
2 Free radical photochemistry of dissolved organic matter
2.1 Hydroxyl radicals
2.2 Singlet oxygen
2.3 Hydrated electron
2.4 Excited triplet states of dissolved organic matter
3 Influence of dissolved organic matter on the photo-transformation of various contaminants
3.1 Inorganic ions
3.2 Methyl mercury
3.3 PAHs
3.4 Phenols
3.5 Pesticides
3.6 Other pollutants
4 Conclusions and outlook

CLC Number: 

[1] 吴丰昌(Wu F C),王立英(Wang L Y),黎文(Li W),张润宇(Zhang R Y),傅平青(Fu P Q),廖海清(Liao H Q),白英臣(Bai Y C),郭建阳(G J Y),王静(Wang J). 湖泊科学(Lake Science), 2008, 20(1): 1-12
[2] Leenheer J A, Croué J P. Environ. Sci. Technol., 2003, 37(1): 18-26
[3] Sulzberger B, Durisch-Kaiser E. Aquatic Sciences-Research Across Boundaries, 2009, 71(2): 104-126
[4] 黄泽春(Huang Z C),陈同斌(Chen T B),雷梅(Lei M). 生态学报(Acta Ecologica Sinca), 2002, 22(002): 259-269
[5] Chin Y P, Aiken G, OLoughlin E. Environ. Sci. Technol., 1994, 28(11): 1853-1858
[6] Zhou X, Mopper K. Mar. Chem., 1990, 30: 71-88
[7] Salonen K, Vahatalo A. Environ. Int., 1994, 20(3): 307-312
[8] Kumamoto Y, Wang J, Fujiwara K. Bull. Chem. Soc. Jpn., 1994, 67(3): 720-727
[9] Allen J M, Lucas S, Allen S K. Environ. Toxicol. Chem., 1996, 15(2): 107-113
[10] Latch D E, McNeill K. Science, 2006, 311(5768): 1743-1747
[11] Glaeser S P, Grossart H P, Glaeser J. Environ. Microbiol., 2010, 12(12): 3124-3136
[12] Richard C, Canonica S. Environmental Photochemistry Part Ⅱ, 2005, 299-323
[13] Page S E, Arnold W A, Mcneill K. Environ. Sci. Technol., 2011, 45: 2818-2825
[14] Zepp R G, Schlotzhauer P F, Sink R M. Environ. Sci. Technol., 1985, 19(1): 74-81
[15] Vaughan P P, Blough N V. Environ. Sci. Technol., 1998, 32(19): 2947-2953
[16] Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R I, Arsene C. Environ. Sci. Technol., 2006, 40(12): 3775-3781
[17] Mopper K, Zhou X. Science, 1990, 250(4981): 661-664
[18] Zepp R G, Wolfe N L, Baughman G L, Hollis R C. Nature, 1977, 267: 421-423
[19] Albinet A, Minero C, Vione D. Sci. Total Environ., 2010, 408(16): 3367-3373
[20] Anastasio C, Mcgregor K G. Atmos. Environ., 2001, 35(6): 1079-1089
[21] Al Housari F, Vione D, Chiron S, Barbati S. Photochem. Photobio. Sci., 2010, 9(1): 78-86
[22] Aguer J P, Richard C, Andreux F. J. Photochem. Photobio. A, 1997, 103(1/2): 163-168
[23] Zepp R G, Braun A M, Hoigne J, Leenheer J A. Environ. Sci. Technol., 1987, 21(5): 485-490
[24] Thomas-Smith T E, Blough N V. Environ. Sci. Technol., 2001, 35(13): 2721-2726
[25] Allen J M, Lucas S, Allen S K. Environ. Toxicol. Chem., 1996, 15(2): 107-113
[26] Zepp R G, Hoigne J, Bader H. Environ. Sci. Technol., 1987, 21(5): 443-450
[27] Brezonik P L, Fulkerson-Brekken J. Environ. Sci. Technol., 1998, 32(19): 3004-3010
[28] Mack J, Bolton J R. J. Photochem. Photobio. A, 1999, 128(1/3): 1-13
[29] Southworth B A, Voelker B M. Environ. Sci. Technol., 2003, 37(6): 1130-1136
[30] White E M, Vaughan P P, Zepp R G. Aquatic Sciences-Research Across Boundaries, 2003, 65(4): 402-414
[31] Canonica S, Freiburghaus M. Environ. Sci. Technol., 2001, 35(4): 690-695
[32] Boreen A L, Edhlund B L, Cotner J B, Mcneill K. Environ. Sci. Technol., 2008, 42(15): 5492-5498
[33] Vaughan P P, Thomas-Smith T E, Blough N V. Abstracts of Papers of The American Chemical Society, 1998, 216(Part 1): 58
[34] Wang W, Zafiriou O C, Chan I Y, Zepp R G, Blough N V. Environ. Sci. Technol., 2007, 41(5): 1601-1607
[35] Steiner J P, Faraggi M, Klapper M H, Dorfman L M. Biochemistry, 1985, 24(9): 2139-2146
[36] Milosavljevic B H, Laverne J A, Pimblott S M. J. Phys. Chem. A, 2005, 109(34): 7751-7756
[37] Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox R V, Gardinali P R, Mincher B J. J. Phys. Chem. A, 2006, 110(6): 2176-2180
[38] Wojnarovits L, Palfi T, Takacs E, Emmi S S. Radiat. Phys. Chem., 2005, 74(3/4): 239-246
[39] Mezyk S P, Ewing D B, Kiddle J J, Madden K P. J. Phys. Chem. A, 2006, 110(14): 4732-4737
[40] Varghese R, Mohan H, Manoj P, Manoj V M, Aravind U K, Vandana K, Aravindakumar C T. J. Agr. Food Chem., 2006, 54(21): 8171-8176
[41] Huang L, Dong W B, Hou H Q. Chem. Phys. Lett., 2007, 436(1/3): 124-128
[42] Mezyk S P, Neubauer T J, Cooper W J, Peller J R. J. Phys. Chem. A, 2007, 111(37): 9019-9024
[43] Mezyk S P, Hardison D R, Song W H, O’Shea K E, Bartels D M, Cooper W J. Chemosphere, 2009, 77(10): 1352-1357
[44] Jeong J, Song W H, Cooper W J, Jung J, Greaves J. Chemosphere, 2010, 78(5): 533-540
[45] Cooper W J, Zika R G, Petasne R G, Fischer A M. Adv. Chem. Ser., 1989, 219: 333-362
[46] Vialaton D, Richard C. Aquatic Sciences-Research Across Boundaries, 2002, 64(2): 207-215
[47] Canonica S, Jans U, Stemmler K, Hoigne J. Environ. Sci. Technol., 1995, 29(7): 1822-1831
[48] Canonica S, Hellrung B, Wirz J. J. Phys. Chem. A, 2000, 104(6): 1226-1232
[49] Aguer J P, Richard C. Pesticide Science, 1996, 46(2): 151-155
[50] Gerecke A C, Canonica S, Müller S R, Scharer M, Schwarzenbach R P. Environ. Sci. Technol., 2001, 35(19): 3915-3923
[51] Canonica S. Chimia International Journal for Chemistry, 2007, 61(10): 641-644
[52] Guerard J J, Chin Y P, Mash H, Hadad C M. Environ. Sci. Technol., 2009, 43(22): 8587-8592
[53] Xu H, Cooper W J, Jung J, Song W. Water Res., 2011, 45: 632-638
[54] Boreen A L, Edhlund B L, Cotner J B, McNeill K. Environ. Sci. Technol., 2008, 42(15): 5492-5498
[55] Guerard J J, Miller P L, Trouts T D, Chin Y P. Aquat. Sci., 2009, 71(2): 160-169
[56] Wenk J, von Gunten U, Canonica S. Environ. Sci. Technol., 2011, 45: 1334-1340
[57] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1994, 28(5): 799-804
[58] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37(19): 4403-4409
[59] Voelker B M, Morel F, Sulzberger B. Environ. Sci. Technol., 1997, 31(4): 1004-1011
[60] Song W J, Ma W H, Ma J H, Chen C C, Zhao J C. Environ. Sci. Technol., 2005, 39(9): 3121-3127
[61] Meunier L, Laubscher H, Hug S J, Sulzberger B. Aquat. Sci., 2005, 67(3): 292-307
[62] Allard B, Arsenie I. Water, Air, & Soil Pollution, 1991, 56(1): 457-464
[63] Xiao Z F, Strmberg D, Lindqvist O. Water, Air, & Soil Pollution., 1995, 80(1): 789-798
[64] Zhang H, Lindberg S E. Environ. Sci. Technol., 2001, 35(5): 928-935
[65] Buschmann J, Canonica S, Sigg L. Environ. Sci. Technol., 2005, 39(14): 5335-5341
[66] Buschmann J, Canonica S, Lindauer U, Hug S J, Sigg L. Environ. Sci. Technol., 2005, 39(24): 9541-9546
[67] Sellers P, Kelly C A, Rudd J, Machutchon A R. Nature, 1996, 380(6576): 694-697
[68] Kieber R J, Parler N E, Skrabal S A, Willey J D. J. Atmos. Chem., 2008, 60(2): 153-168
[69] Zhang T, Hsu-Kim H. Nature Geoscience, 2010, 3(7): 473-476
[70] Li Y B, Mao Y X, Liu G L, Tachiev G, Roelant D, Feng X B, Cai Y. Environ. Sci. Technol., 2010, 44(17): 6661-6666
[71] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2010, 44(16): 6138-6143
[72] Fasnacht M P, Blough N V. Environ. Sci. Technol., 2002, 36(20): 4364-4369
[73] Bertilsson S, Widenfalk A. Hydrobiologia, 2002, 469(1): 23-32
[74] Xia X H, Li G C, Yang Z F, Chen Y M, Huang G H. Environ. Pollut., 2009, 157(4): 1352-1359
[75] Canonica S, Hoigne J. Chemosphere, 1995, 30(12): 2365-2374
[76] Vialaton D, Richard C, Baglio D, Paya-Perez A B. J. Photoch. Photobio. A, 1998, 119(1): 39-45
[77] Fukushima M, Tatsumi K, Morimoto K. Environ. Toxicol. Chem., 2000, 19(7): 1711-1716
[78] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35(9): 1771-1778
[79] Tchaikovskaya O N, Solkolloval I V, Yudina N V. Luminescence, 2005, 20(3): 187-191
[80] Xu D, Wu Z B, Xie X L, Deng N S. Fresen. Environ. Bull., 2006, 15(10): 1292-1298
[81] Kepczynski M, Czosnyka A, Nowakowska M. J. Photoch. Photobio. A, 2007, 185(2/3): 198-205
[82] Liu H, Zhao H M, Quan X, Zhang Y B, Chen S. Environ. Sci. Technol., 2009, 43(20): 7712-7717
[83] Kochany J, Maguire R J. J. Agric. Food Chem., 1994, 42(2): 406-412
[84] Mathew R, Khan S U. J. Agric. Food Chem., 1996, 44(12): 3996-4000
[85] Bachman J, Patterson H H. Environ. Sci. Technol., 1999, 33(6): 874-881
[86] Sakkas V A, Lambropoulou D A, Albanis T A. Chemosphere, 2002, 48(9): 939-945
[87] Sakellarides T M, Siskos M G, Albanis T A. Int. J. Environ. Anal. Chem., 2003, 83(1): 33-50
[88] Walse S S, Morgan S L, Kong L, Ferry J L. Environ. Sci. Technol., 2004, 38(14): 3908-3915
[89] Dimou A D, Sakkas V A, Albanis T A. J. Photoch. Photobio. A, 2004, 163(3): 473-480
[90] Dimou A D, Sakkas V A, Albanis T A. Int. J. Environ. Anal. Chem., 2004, 84(1/3): 173-182
[91] Fu H B, Quan X, Liu Z Y, Chen S. Langmuir, 2004, 20(12): 4867-4873
[92] Latch D E, Packer J L, Stender B L, Vanoverbeke J, Arnold W A, McNeill K. Environ. Toxicol. Chem., 2005, 24(3): 517-525
[93] Miller P L, Chin Y P. Environ. Sci. Technol., 2005, 39(12): 4454-4462
[94] Goncalves C, Dimou A, Sakkas V, Alpendurada M F, Albanis T A. Chemosphere, 2006, 64(8): 1375-1382
[95] Lam M W, Mabury S A. Aquat. Sci., 2005, 67(2): 177-188
[96] Sakkas V A, Lambropoulou D A, Albanis T A. J. Photoch. Photobio. A, 2002, 147(2): 135-141
[97] Boreen A L, Arnold W A, McNeill K. Environ. Sci. Technol., 2005, 39(10): 3630-3638
[98] Kieber R J, Helz G R. Environ. Sci. Technol., 1992, 26(2): 307-312
[99] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1993, 27(8): 1572-1576
[100] Voelker B M, Sulzberger B. Environ. Sci. Technol., 1996, 30(4): 1106-1114
[101] Nriagu J O. Sci. Total Environ., 1994, 154(1): 1-8
[102] Haitzer M, Aiken G R, Ryan J N. Environ. Sci. Technol., 2002, 36(16): 3564-3570
[103] Ravichandran M. Chemosphere, 2004, 55(3): 319-331
[104] Amyot M, McQueen D J, Mierle G, Lean D R S. Environ. Sci. Technol., 1994, 28(13): 2366-2371
[105] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2006, 40(4): 1212-1216
[106] Suda I, Totoki S, Takahashi H. Arch. Toxicol., 1991, 65(2): 129-134
[107] Chen J, Pehkonen S O, Lin C J. Water Res., 2003, 37(10): 2496-2504
[108] Suda I, Suda M, Hirayama K. Arch. Toxicol., 1993, 67(5): 365-368
[109] Tossell J A. J. Phys. Chem. A, 1998, 102(20): 3587-3591
[110] Khwaja A R, Brezonik P L, Bloom P R. Abstracts of Papers of The American Chemical Society, 2001, 222(Part 1): 70
[111] Lehnherr I, Louis V. Environ. Sci. Technol., 2009, 43(15): 5692-5698
[112] Hill J R, O’Driscoll N J, Lean D. Sci. Total Environ., 2009, 408(2): 408-414
[113] Fasnacht M P, Blough N V. Environ. Sci. Technol., 2003, 37(24): 5767-5772
[114] David B, Boule P. Chemosphere, 1993, 26(9): 1617-1630
[115] Shemer H, Linden K G. J. Photoch. Photobio. A, 2007, 187(2/3): 186-195
[116] Tratnyek P G, Holgne J. Environ. Sci. Technol., 1991, 25(9): 1596-1604
[117] Kawaguchi H. J. Contam. Hydrol., 1992, 9(1/2): 105-114
[118] Tratnyek P G, Hoigne J. J. Photoch. Photobio. A, 1994, 84(2): 153-160
[119] Aguer J P, Richard C. J. Photoch. Photobio. A, 1996, 93(2-3): 193-198
[120] Walse S S, Morgan S L, Kong L, Ferry J L. Environ. Sci. Technol., 2004, 38(14): 3908-3915
[121] Canonica S, Hellrung B, Muller P, Wirz J. Environ. Sci. Technol., 2006, 40(21): 6636-6641
[122] Guerard J J, Chin Y P, Mash H, Hadad C M. Environ. Sci. Technol., 2009, 43(22): 8587-8592
[123] Neamtu M, Frimmel F H. Sci. Total Environ., 2006, 369(1/3): 295-306
[124] Chowdhury R R, Charpentier P A, Ray M B. J. Photoch. Photobio. A, 2011, 219(1): 67-75
[1] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[2] Lin Han, Baoliang Chen*. Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020.
[3] Liu Yajun. Computational Photochemistry [J]. Progress in Chemistry, 2012, 24(06): 950-956.
[4] Wang Zhaohui, Song Wenjing, Ma Wanhong, Zhao Jincai. Environmental Photochemistry of Iron Complexes and Their Involvement in Environmental Chemical Processes [J]. Progress in Chemistry, 2012, 24(0203): 423-432.
[5] Han Qiang, Yang Shiying, Yang Xin, Shao Xueting, Niu Rui, Wang Leilei. Cobalt Catalyzed Peroxymonosulfate Oxidation: A Review of Mechanisms and Applications on Degradating Organic Pollutants in Water [J]. Progress in Chemistry, 2012, 24(01): 144-156.
[6] . Activated Carbon Catalyzed Peroxide Degradation of Organic Pollutants in Water [J]. Progress in Chemistry, 2010, 22(10): 2071-2078.
[7] Wu Yulin. Qinghaosu (Artemisinin) – Revelations from History and Reality [J]. Progress in Chemistry, 2009, 21(11): 2365-2371.
[8] . Reactive Halogen Chemistry [J]. Progress in Chemistry, 2009, 21(0203): 307-334.
[9] Ding Wanjian,Fang Weihai**. Ab initio Studies on the Photochemical Reactions [J]. Progress in Chemistry, 2007, 19(10): 1449-1459.
[10] Long Jia1,2,Maofa Ge2**,Yongfu Xu3,Lin Du2,Guoshun Zhuang1,Dianxun Wang2. Advances in Atmospheric Ozone Chemistry [J]. Progress in Chemistry, 2006, 18(11): 1565-1574.
[11] Linhui Tong Runhua Lu Yoshihisa Inoue Inoue . Asymmetric Photochemistry with Native and Modified Cyclodextrins [J]. Progress in Chemistry, 2006, 18(05): 533-541.
[12] Chen Jinping1,You Changjiang1,Liu Baining1,Li Yi1**,Yang Guoqiang2. Advances of Dendrimers in Photochemistry [J]. Progress in Chemistry, 2005, 17(04): 722-731.
[13] Xu Long,Yang Xi**,Zhang Aiqian,Yang Hongsheng. Progress in Photochemistry of Copper in Aquatic Systems [J]. Progress in Chemistry, 2005, 17(03): 412-416.
[14] Wu Shikang. Some Photo-Chemical and Photo-Physical Problems in Fluorescent Chemical Sensor Study [J]. Progress in Chemistry, 2004, 16(02): 174-.
[15] Wu Shikang,Zhang Xiaohong, Li Shutang. Problems in the Study of Electro-Lum inescence Devices Based on Phosphorescent Dyes [J]. Progress in Chemistry, 2001, 13(06): 413-.