中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (07): 1353-1358 Previous Articles   Next Articles

• Review •

Self-Assembly of Rod-Coil Molecules with Poly(ethylene oxide) Chains and Phenylene Rods

Zhong Keli1,2, Chen Tie2, Jin Longyi2   

  1. 1. Food Safety Key Lab of Liaoning Province, Engineering and Technology Research Center of Food Preservation, Processing and Safety Control of Liaoning Province, College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121013, China;
    2. Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Departent of Chemistry, College of Science, Yanbian University, Yanji, 133002,China
  • Received: Revised: Online: Published:
PDF ( 740 ) Cited
Export

EndNote

Ris

BibTeX

The rod-coil molecules, containing the hydrophilic poly(ethylene oxide) (PEO) chains and multi-phenylene as a rod, are able to self-assemble into various supramolecular nanostructures in bulk and an aqueous solution, caused by strong π-π stacking of aromatic rod segments and microphase separation of rod and coil segments. One of the great fascinating research topics is the creation of supramolecular nano-objects to explore novel properties and functions of rod-coil molecules. The shapes of the rod block can dramatically influence on the fashion of molecular arrangement, self-organizing property and micro-structure of rod-coil molecular system. In this paper, the self-assembling behaviors of diverse rod-coil molecules are summarized including Y-shaped, T-shaped, O-shaped, K-shaped, n-shaped, propeller-like and dumbbell-like rods. Finally, the future research trend of this kind of rod-coil molecules is prospected. Contents
1 Introduction
2 Dumbbell-like molecule
3 K-shaped molecule
4 O-shaped molecule
5 T-shaped molecule
6 Propeller-like molecule
7 Y-shaped molecule
8 n-Shaped molecule
9 Outlook

CLC Number: 

[1] Claessens C G, Stoddart J F. J. Phys. Org. Chem., 1997, 10(5): 254-272
[2] Gillard R E, Raymo F M, Stoddart J F. Chem. Eur. J., 1997, 3(12): 1933-1940
[3] De Mendoza J. Chem. Eur. J., 1998, 4(8): 1373-1377
[4] Kato T, Mizoshita N, Kanie K. Macromol. Rapid. Commun., 2001, 22(11): 797-814
[5] Prins L J, Reinhoudt D N, Timmerman P. Angew. Chem. Int. Ed., 2001, 40(13): 2382-2426
[6] Qi W, Li H L, Wu L X. Adv. Mater., 2007, 19(15): 1983-1987
[7] Zhang J, Zhou M J, Wang S, Carr J, Li W, Wu L X. Langmuir, 2011, 27(7): 4134-4141
[8] Wang H B, Yan Y, Li B, Bi L H, Wu L X. Chem. Eur. J., 2011, 17(15): 4273-4282
[9] Kato T, Yasuda T, Kamikawa Y, Yoshio M. Chem. Commun., 2009, 729-739
[10] Lehn J M. Angew. Chem. Int. Ed., 1990, 29(11): 1304 -1319
[11] Sergeyev S, Pisula W, Geerts Y H. Chem. Soc. Rev., 2007, 36(12): 1902-1929
[12] Al-Jamal K T, Ramaswamy C, Florence A T. Adv. Drug. Delivery. Rev., 2005, 57(15): 2238-2270
[13] DeMattei C R, Huang B H, Tomalia D A. Nano Lett., 2004, 4(5): 771-777
[14] Mezzenga R, Ruokolainen J, Canilho N, Kasemi E, Schluter D A, Lee W B, Fredrickson G H. Soft Matter, 2009, 5(1): 92-97
[15] Lee M, Jang C J, Ryu J H. J. Am. Chem. Soc., 2004, 126(26): 8082-8083
[16] Palmer L C, Stupp S I. Acc. Chem. Res., 2008, 41 (12): 1674-1684
[17] Ryu J H, Oh N K, Zin W C, Lee M. J. Am. Chem. Soc., 2004, 126(11): 3551-3558
[18] Ho C C, Lee Y H, Dai C A, Segalman R A, Su W F. Macromolecules, 2009, 42(12): 4208-4219
[19] Olsen B D, Segalman R A. Mater. Sci. Eng. R, 2008, 62(2): 37-66
[20] Tao Y F, Zohar H, Olsen B D, Segalman R A. Nano Lett., 2007, 7(9): 2742-2746
[21] Tschierske C. J. Mater. Chem., 2001, 11(11): 2647-2671
[22] Minich E A, Nowak A P, Deming T J, Pochan D J. Polymer, 2004, 45(6): 1951-1957
[23] Fan F, He H F, Wan X H, Chen X F, Zhou Q F. Chinese J. Polym. Sci., 2006, 24(2): 115-124
[24] He H F, Cao H Q, Wan X H, Tu Y F, Chen X F, Zhou Q F. Chinese Sci. Bull., 2003, 48(15): 1525-1530
[25] Yang L F, He H F, Cao H Q, Wan X H, Zhou Q F. Chinese J. Polym. Sci., 2002, 20(5): 401-407
[26] Ryu J, Cho B, Lee M. Bull. Korean. Chem. Soc., 2006, 27(9): 1270-1282
[27] Lim Y, Moon K, Lee M. Chem. Soc. Rev., 2009, 38(4): 925 -934
[28] Lee M, Cho B, Zin W. Chem. Rev., 2001, 101(12): 3869- 3892
[29] Huang Z, Ryu J, Lee E, Lee M. Chem. Mater., 2007, 19(26): 6569-6574
[30] Lee E, Jeong Y, Kim J, Lee M. Macromolecules, 2007, 40(23): 8355-8360
[31] Ryu J, Kim H, Huang Z, Lee E, Lee M. Angew. Chem. Int. Ed., 2006, 45(32): 5304-5307
[32] Lee E, Huang Z, Ryu J H, Lee M. Chem. Eur. J., 2008, 14(23): 6957-6966
[33] Ryu J H, Oh N K, Lee M. Chem. Commun., 2005, 1770-1772
[34] Moon K S, Kim H J, Lee E, Lee M. Angew. Chem. Int. Ed., 2007, 46(36): 6807-6810
[35] Moon K S, Lee E, Lee M. Chem. Commun., 2008, 3061-3063
[36] Bae J, Kim J, Oh N, Lee M. Macromolecules, 2005, 38(10): 4226-4230
[37] Lee E, Kim J, Lee M. Angew. Chem. Int. Ed., 2008, 120(34): 6475-6478
[38] Ryu J H, Lee E, Lim Y-b, Lee M. J. Am. Chem. Soc., 2007, 129(15): 4808-4814
[39] Jang C, Ryu J, Lee J, Sohn D, Lee M. Chem. Mater., 2004, 16(22): 4226-4231
[40] Kim J, Lee E, Lee M. Angew. Chem. Int. Ed., 2006, 45(43): 7195-7198
[41] Zhong K L, Huang Z, Man Z J, Jin L Y, Yin B Z, Lee M. J. Polym. Sci. Part. A: Polym. Chem., 2010, 48(6): 1415-1422
[42] Zhong K L, Man Z J, Huang Z G, Chen T, Yin B Z, Jin L Y. Polym. Int., 2011, 60(5): 845-850
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Meng Wang, Jianfeng Yang. Liquid Crystal Elastomers Based Soft Robots [J]. Progress in Chemistry, 2022, 34(1): 168-177.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Yang Bai, Xiaochen Yan, Caiping Liu, Hao Yao. Synthesis and Properties of H-Shaped Polymers [J]. Progress in Chemistry, 2020, 32(12): 1879-1884.
[11] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[12] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[13] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.