中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Methionine Sulfoxide Reductase and Their Roles in Cataracts Formation and Development

Li Yi, Li Lin, Huang Kaixun   

  1. Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received: Revised: Online: Published:
PDF ( 929 ) Cited
Export

EndNote

Ris

BibTeX

Methionine (Met) is one of the most easily oxidized amino acids and undergoes reversible oxidation, leading to the formation of S-and R-methionine sulfoxide (MetO). An increase of protein MetO is related to the aging of lens aging and formation of cataract. In organisms there are two classes of methionine sulfoxide reductases (Msrs), MsrA and MsrB, that can stereospecifically catalyze the thioredoxin-dependent reduction of free and protein-bound S-and R-MetO to Met, respectively, thus maintaining the structure and function of the proteins. There are one MsrA and three MsrBs (MsrB1, MsrB2 and MsrB3) in mammals. MsrB1 is a selenoprotein, named selenoprotein R (SelR). In this review, we introduced the gene expressions, distribution and subcellular localization of Msrs, compared their differences on protein structures and the possible catalytic mechanisms between MsrA and MsrBs, and discussed the relationship of oxidation of Met residues in lens proteins with cataract formation. These research progresses suggest that the Msrs as antioxidative reductases may play an important role in restraining the lens damage by reducing MetO to Met. In addition, because MsrB1 as only one selenoprotein is regulated by selenium level, appropriate selenium levels in lens by selenium supplementation in order to maintain MsrB1 activity may be beneficial for prevention cataract formation and development. Contents
1 Introduction
2 Species distribution and subcellular localization of Msrs
3 Structures and catalytic mechanisms of Msrs
3.1 Structure of Msrs
3.2 Catalytic mechanisms of Msrs
4 Methionine oxidation and cataract formation
4.1 Methionine oxidation in cataract lenses
4.2 MsrA and cataracts
4.3 MsrBs and cataracts
5 Conclusion and prospects

CLC Number: 

[1] Kim H Y, Gladyshev V N. Biochem. J., 2007, 407: 321-329
[2] Brot N, Weissbach L, Werth J, Weissbach H. Proc. Natl. Acad. Sci. USA, 1981, 78: 2155-2158
[3] Singh V K, Moskovitz J, Wilkinson B J, Jayaswal R K. Microbiology, 2001, 147: 3037-3045
[4] Delaye L, Becerra A, Orgel L, Lazcano A. J. Mol. Evol., 2007, 64: 15-32
[5] Kryukov G V, Kumar R A, Koc A, Sun Z, Gladyshev V N. Proc. Natl. Acad. Sci. USA, 2002, 99: 4245-4250
[6] Vougier S, Mary J, Friguet B. Biochem. J., 2003, 373: 531-537
[7] Kim H Y, Gladyshev V N. Biochemistry, 2005, 44: 8059-8067
[8] Lee J W, Gordiyenko N V, Marchetti M, Tserentsoodol N, Sagher D, Alam S, Weissbach H, Kantorow M, Rodriguez I R. Exp. Eye Res., 2006, 82: 816-827
[9] Kim H Y, Gladyshev V N. BMC Mol. Biol., 2006, 7: 11
[10] Kim H Y, Gladyshev V N. Mol. Biol. Cell, 2004, 15: 1055-1064
[11] Hansel A, Heinemann S H, Hoshi T. Biochim. Biophys. Acta, 2005, 1703: 239-247
[12] Kim H Y, Gladyshev V N. Biochem. Biophys. Res. Commun., 2004, 320: 1277-1283
[13] Kim H Y, Fomenko D E, Yoon Y E, Gladyshev V N. Biochemistry, 2006, 45: 13697-13704
[14] Kim H Y, Gladyshev V N. PLoS Biol., 2005, 3: e375
[15] Kumar R A, Koc A, Cerny R L, Gladyshev V N. J. Biol. Chem., 2002, 277: 37527-37535
[16] Olry A, Boschi-Muller S, Yu H, Burnel D, Branlant G. Protein Sci., 2005, 14: 2828-2837
[17] Lowther W T, Brot N, Weissbach H, Matthews B W. Biochemistry, 2000, 39: 13307-13312
[18] Aachmann F L, Sal L S, Kim H Y, Marino S M, Gladyshev V N, Dikiy A. J. Biol. Chem., 2010, 285: 33315-33323
[19] Antoine M, Gand A, Boschi-Muller S, Branlant G. J. Biol. Chem., 2006, 281: 39062-39070
[20] T阾e-Favier F, Cobessi D, Boschi-Muller S, Azza S, Branlant G, Aubry A. Structure, 2000, 8: 1167-1178
[21] Taylor A B, Benglis D M Jr, Dhandayuthapani S, Hart P J. J. Bacteriol., 2003, 185: 4119-4126
[22] Rouhier N, Kauffmann B, Tete-Favier F, Palladino P, Gans P, Branlant G, Jacquot J P, Boschi-Muller S. J. Biol. Chem., 2007, 282: 3367-3378
[23] Aachmann F L, Kwak G H, Del Conte R, Kim H Y, Gladyshev V N, Dikiy A. Proteins, 2011, 79: 3123-3131
[24] Kim H Y, Gladyshev V N. Mol. Biol. Cell, 2004, 15: 1055-1064
[25] Kim H Y, Gladyshev V N. Biochem. Biophys. Res. Commun., 2004, 320: 1277-1283
[26] Antoine M, Gand A, Boschi-Muller S, Branlant G. J. Biol. Chem., 2006, 281: 39062-39070
[27] Coudevylle N, Antoine M, Bouguet-Bonnet S, Mutzenhardt P, Boschi-Muller S, Branlant G, Cung M T. J. Mol. Biol., 2007, 366: 193-206
[28] Lowther W T, Weissbach H, Etienne F, Brot N, Matthews B W. Nat. Struct. Biol., 2002, 9: 348-352
[29] Olry A, Boschi-Muller S, Branlant G. Biochemistry, 2004, 43: 11616-11622
[30] Sagher D, Brunell D, Hejtmancik J F, Kantorow M, Brot N, Weissbach H. Proc. Natl. Acad. Sci. USA, 2006, 103: 8656-8661
[31] Sagher D, Brunell D, Brot N, Vallee B L, Weissbach H. J. Biol. Chem., 2006, 281: 31184-31187
[32] Kyselova Z, Stefek M, Bauer V. J. Diabetes Complicat., 2004, 18: 129-140
[33] Crompton M, Rixon K C, Harding J J. Exp. Eye Res., 1985, 40: 297-311
[34] Truscott R J, Augusteyn R C. Biochim. Biophys. Acta, 1977, 492: 43-52
[35] Smith J B, Jiang X, Abraham E C. Free Radic. Res., 1997, 26: 103-111
[36] Osawa T, Kato Y. Ann. N. Y. Acad. Sci., 2005, 1043: 440-451
[37] Fujii N, Takeuchi N, Fujii N, Tezuka T, Kuge K, Takata T, Kamei A, Saito T. Amino Acids, 2004, 26: 147-152
[38] Truscott R J. Exp. Eye Res., 2005, 80: 709-725
[39] Brennan L A, Lee W, Cowell T, Giblin F, Kantorow M. Mol. Vis., 2009, 15: 985-999
[40] Marchetti M A, Lee W, Cowell T L, Wells T M, Weissbach H, Kantorow M. Exp. Eye Res., 2006, 83: 1281-1286
[41] Kantorow M, Hawse J R, Cowell T L, Benhamed S, Pizarro G O, Reddy V N, Hejtmancik J F. Proc. Natl. Acad. Sci. USA, 2004, 101: 9654-9659
[42] Circu M L, Aw T Y. Free Radic. Biol. Med., 2010, 48: 749-762
[43] Brennan L A, Lee W, Kantorow M. PLoS One, 2010, 5: e15421
[44] Marchetti M A, Pizarro G O, Sagher D, Deamicis C, Brot N, Hejtmancik J F, Weissbach H, Kantorow M. Investig. Ophthalmol. Vis. Sci., 2005, 46: 2107-2112
[45] Li Y, Zhang W, Li P, Huang K. Exp. Eye Res., 2011, 92: 401-407
[46] Moskovitz J, Stadtman E R. Proc. Natl. Acad. Sci. USA, 2003, 100: 7486-7490
[47] Kryukov G V, Kryukov V M, Gladyshev V N. J. Biol. Chem., 1999, 274: 33888-33897
[48] Lescure A, Gautheret D, Carbon P, Krol A. J. Biol. Chem., 1999, 274: 38147-38154
[49] Pascual I, Larrayoz I M, Campos M M, Rodriguez I R. Exp. Eye Res., 2010, 90: 420-428
[1] Tengrui Shi, Yujie Yang, Qiong Liu, Nan Li*. Selenoprotein R: A Unique Methionine Sulfoxide Reductase [J]. Progress in Chemistry, 2018, 30(10): 1496-1502.
[2] Zeng Jinhong Zhang Gongchen Huang Kaixun. Biological Functions of Selenoprotein S [J]. Progress in Chemistry, 2009, 21(0708): 1494-1499.
[3] Huang Kaixun Liu Hongmei Xu Huibi. Vascular Selenoproteins and Atherosclerosis [J]. Progress in Chemistry, 2009, 21(05): 831-835.
[4] Shen Tao,Zhang Tianle,Liu Changlin*. Inorganic Biochemistry on CuZn Superoxide Dismutase Mutants and Neurodegenerative Diseases [J]. Progress in Chemistry, 2004, 16(05): 813-.