中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1185-1198 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Structural Predications and Photophysical Simulations for Materials

Lin Chensheng, Cheng Wendan, Zhang Weilong, Zhang Hao, He Zhangzhen   

  1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, ChineseAcademy of Sciences, Fuzhou 350002
  • Received: Revised: Online: Published:
PDF ( 884 ) Cited
Export

EndNote

Ris

BibTeX

The key question of the successful designs for the nonlinear optical materials with a good performance lies in the credible and effective predictions of material's crystal structure and molecular structure. Then, the computational simulations of the photophysical properties will be made based on structural information of materials. In this article, we will describe the applications of a global search evolutionary algorithm coded in USPEX software, which successfully predicted the crystal structures of Ba2BiInS5/Se5 with second-order nonlinear optics in far infrared region. At the same time, we will also introduce the optimized structures of embedded fullerenes C2@Sc4@C80-Ih and Sc4C2@C80-Ih based on the DFT method. Based on the predicted and optimized structures of materials, we use the sum-over-states method, coded by ourselves in BGP software, combined with the calculation method of excitation-state properties to simulate the state-related and frequency-dependent nonlinear optical properties of molecular crystals, nano-structured molecules, biological proteins and the other systems. Here, the nonlinear optical properties involve the different optical processes of second-order, third-order polarizabilities and two-photon and three-photon absorption cross-sections. In addition, the calculations of second-order and third-order susceptibilities will be also described for some ionic crystals based on the solid energy band theory combined with anti-harmonic oscillator model. Contents
1 Introduction
2 Structural predications
2.1 Predications of crystal structures
2.2 Optimizations of molecular structures
3 Simulations of nonlinear optical properties
3.1 Computational nonlinear optical properties of molecular crystals and carbon nano-molecules
3.2 Simulations of nonlinear optics of ionoic crystals
4 Conclusions and outlook

CLC Number: 

[1] Oganov A R, Ma Y, Lyakhov A O, Valle M, Gatti C. Rev. Mineral. Geochem., 2010, 71: 271-298
[2] Oganov A R, Glass C W J. Phys. : Cond. Matter, 2008, 20: 064210-6
[3] Maddox J. Nature (London), 1988, 335: 201
[4] Lyakhov A O, Oganov A R, Valle M. Comp. Phys. Comm., 2010, 181: 1623-1632
[5] Oganov A R, Glass C W. J. Chem. Phys., 2006, 124: art. no. 244704-15
[6] Panagiotis G K, Constantinos C P. J. Comput. Chem., 2005, 26: 304-324
[7] Hart J N, Allan N L, Claeyssens F. Phys. Chem. Chem. Phys., 2010, 12: 8620-8631
[8] Oganov A R, Lyakhov A O, Valle M. Acc. Chem. Res., 2011, 44: 227-237.
[9] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedtb H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S. J. Appl. Phys., 2006, 100: art. no. 051606
[10] Carriles R, Schafer D N, Sheetz K E, Field J F, Cisek R, Barzda V, Sylvester A W, Squier J A. Rev. Sci. Instrum., 2009, 80: art. no. 081101
[11] Campagnola P J, Clark H A, Mohler W A, Lewis A, Loew L M. J. Biomedical Optics, 2001, 6: 277-286
[12] http: //en. wikipedia. org/wiki/Infrared_countermeasure
[13] He G S. Progress in Quantum Electronics, 2005, 26: 131-191
[14] Curtarolo S, Morgan D, Persson K, Rodgers J, Ceder G. Phys. Rev. Lett., 2003, 91: art. no. 135503
[15] Woodley S M, Catlow R. Nat. Mater., 2008, 7: 937-946
[16] Pannetier J, Bassasalsina J, Rodriguez-Carvajal J, Caignaert V. Nature, 1990, 346: 343-345
[17] Schon J C, Jansen M. Angew. Chem. Int. Edn, 1996, 35: 1287-304
[18] Doll K, Schon J C, Jansen M. Phys. Rev. B, 2008 78: art. no. 144110
[19] Doll K, Schon J C, Jansen M. J. Chem. Phys., 2010, 133: art. no. 024107
[20] Godecker S. J. Chem. Phys., 2004, 120: art. no. 9911
[21] Amsler M, Goedecker S. J. Chem. Phys., 2010, 133: 224104-224108
[22] Martonak R, Laio A, Parrinello M. Phys. Rev. Lett., 2003, 90: art. no. 075503
[23] Martonak R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Zipoli F, Parrinello M. Z. Kristallogr., 2005, 220: 489-498
[24] Martonak R, Donadio D, Oganov A R, Parrinello M. Nat. Mater., 2006, 5: 623-626
[25] Oganov A R. Modern Methods of Crystal Structure Prediction, 1nd Ed, Berlin: Wiley-VCH, 2010.
[26] http: //mysbfiles. stonybrook. edu/~aoganov/
[27] (a) Gao G, Oganov A R, Bergara A, Martinez-Canalez M, Cui T, Iitaka T, Ma Y, Zou G. Phys. Rev. Lett., 2008, 101: art. no. 107002; (b) Oganov A R, Ono S. Nature, 2004, 430: 445-448; (c) Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Science, 2004, 304: 855-858
[28] Gen L, Cheng W D. Inorg. Chem., 2011, 50: 5679-5686
[29] http: //en. wikipedia. org/wiki/Energy
[30] Tan K, Lu X, Wang C R. J. Phys. Chem. B, 2006, 110: 11098-11102
[31] Wang T S, Chen N, Xiang J F, Bao Li, Wu J Y, Xu W, Jiang L, Tan K, Shu C Y, Lu X, Wang C R. J. Am. Chem. Soc., 2009, 131: 16646-16647
[32] Wang T S, Feng L, Wu J Y, Xu W, Xiang J F, Tan K, Ma Y H, Zheng J P, Jiang L, Lu X, Shu C Y, Wang C R. J. Am. Chem. Soc., 2010, 132: 16362-16364
[33] Jin P, Zhou Z, Hao C, Gao Z, Tan K, Lu X, Chen Z. Phys. Chem. Chem. Phys., 2010, 12: 12442-12449
[34] Franken P A, Hill A E, Peters C W, Weinreich G. Phys. Rev. Lett., 1961, 7: 118-119
[35] Szoke A, Daneu V, Goldhar J, Kurnit N A. Appl. Phys. Lett., 1969, 15: 376-379
[36] Kirtman B, Luis J M, in Non-Linear Optical Properties of Matter (eds. Papadopoulos M G, Leszczynski J, Sadlej A J), Netherlands: Springer, 2006, 101-128
[37] Bishop D M. Adv. Chem. Phys., 1998, 104: 1-40
[38] Cohen H D, Roothaan C C J. J. Chem. Phys., 1965, 43: S34-S39
[39] Kurtz H J, Stewart J J P. Dieter K M. J. Comp. Chem., 1990, 11: 82-87
[40] Olsen J, Jorgensen P. J. Chem. Phys., 1985, 82: 3235-3264
[41] Olsen J, Jorgensen P. Modern Electronic Structure Theory (eds. Yarkony D R), Singapore: World Scientific, 1995, 2: 857-985
[42] Orr B J, Ward J F. Mol. Phys., 1971, 20: 513-526
[43] Ward J F. Rev. Mod. Phys., 1965, 37: 1-18
[44] Norman P, Ruud K. Non-Linear Optical Properties of Matter (eds. Papadopoulos M G, Leszczynski J, Sadlej A J), The Netherlands: Springer, 2006, 1-49
[45] Cheng W D, Chen J T, Lin Q S, Zhang Q E, Lu J X. Phys. Rev. B, 1999, 60: 11747-11754
[46] Wu W S, Wu D S, Cheng W D, Zhang H, Dai J C. Cryst. Growth Des., 2007, 7: 2316-2323.
[47] Bishop D M. J. Chem. Phys., 1994, 100: 6535-6542
[48] Boy R W, Nonlinear Optics, San Diego: Academic Press, 1992, 148
[49] Atkins P W. Molecular Quantum Mechanics, Oxford: Oxford Universty Press, 1983, p 351
[50] Wu D S, Cheng W D, Zhang H, Li X D, Lan Y Z, Chen D G, Gong Y J, Zhang Y C. Phys. Rev. B, 2003, 68: art. no. 125402
[51] Pierce B M. J. Chem. Phys., 1989, 91: 791-811
[52] Bredas J L, Adant C, Tacks P, Persoons A. Chem. Rev., 1994, 94: 243-278
[53] Willetts A, Rice J E, Burland D M. J. Chem. Phys., 1992, 97: 7590-7599
[54] Liu X, Si J, Chang B, Xu G, Yang Q, Pan Z, Xie S, Ye P. Appl. Phys. Lett., 1999, 74: 164-166
[55] Wang S, Huang W, Yang H, Gong Q, Shi Z, Zhou X, Qiang D, Gu Z. Chem. Phys. Lett., 2000, 320: 411-414
[56] Cheng W D, Hu H, Wu D S, Wang J Y, Huang S P, Xe Z, Zhang H. J. Phys. Chem. A, 2009, 113: 5966-5971
[57] Shen J, Cheng W D, Wu D S, Huang S P, Hu H, Xie Z. J. Phys. Chem. A, 2007, 111: 9249-9254
[58] Cheng WD, Wu D S, Li X D, Lan Y Z, Zhang H, Chen D G. Gong Y J, Zhang Y C, Li F F, Shen J, Kan Z G, Phys. Rev. B, 2004, 70: art. no. 155401
[59] Beljonne D, Wenseleers W, Zojer E, Shuai Z, Vogel H, Pond S J K, Perry J W, Marder S R, Jean-Luc B. Adv. Funct. Matter., 2002, 12: 631-641
[60] Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M. Adv. Mater., 2008, 20: 4641-4678
[61] Ohta K, Antonov L, Yamada S, Kamada K. J Chem. Phys., 2007, 127: art. no. 084504
[62] Cronstrand P, Jansik B, Jonsson D, Luoa Y, Ågren H. J. Chem. Phys., 2004, 121: 9239-9246
[63] Zhu L, Yang X, Yi Y, Xuan P, Shuai Z, Chen D, Zojer E, Bre'das J L, Beljonne D. J. Chem. Phys., 2004, 121: 11060-11067
[64] Lin N, Zhao X, Yang J X, Jiang M H, Liu J C, Wang C K, Shi W, Meng J, Weng J. J. Chem. Phys., 2006, 124: art. no. 024704
[65] McClain W M. J. Chem. Phys., 1971, 55: 2789-2796
[66] He G S, Liu S H, Physics of Nonlinear Optics, Singapore: World Scientific Publishing, 1999, p. 464
[67] Boyd R W. Nonlinear Optics, New York: Academic Press, 1992, 21-53; 159-164; 257-262
[68] Zhang W L, Cheng W D, Zhang H, Geng L, Lin C S, He Z Z. J. Am. Chem. Soc., 2010, 132: 1508-1509
[69] Lin C S, Cheng W D, Zhang W L. Adv. Mater. Res., 2011, 216: 1-5
[70] Bassani F, Parravicini G P, Electronic States and Optical Transitions In Solids, Oxford: Pergamon Press Ltd., 1975, 149-154
[71] Lucarini V, Saarinen J J, Peiponen K-E, Vartiainen E M, Kramers-Kronig Relations in Optical Materials Research, Berlin: Springer, 2004, 28-49
[72] Cheng W D, Huang S P, Wu D S, Li X D, Lan Y Z, Li F F, Shen J, Zhang H, Gong Y J. Appl. Phys. Lett., 2005, 87: art. no. 141905
[1] Sun Liang, Yang Chunhui, Ma Tianhui, Zhu Chongqiang. Nonlinear Optical Crystals LiBX2(B=Ga, In; X=S, Se, Te) [J]. Progress in Chemistry, 2014, 26(0203): 293-302.