中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Two-Dimensional Titania Nanosheets

Shi Jianwen, Chen Shaohua, Cui Haojie, Fu Minglai*   

  1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received: Revised: Online: Published:
PDF ( 1342 ) Cited
Export

EndNote

Ris

BibTeX

Titania nanosheets is one kind of novel two-dimensional materials with single layer of 0.7 nm thickness, which endows it many special properties different from bulk titania, such as high anisotropy, single crystal property, colloid and polyelectrolyte properties, large specific surface area, high surface energy, quantum size effects, etc. Potential applications can be expected in photon-to-electron conversion, magnetooptical effects, high permittivity devices, electrochemical energy storage, humidity-sensitive sensors, self-cleaning and photocatalysis fields. In this review, the intrinsic properties of titania nanosheets, such as optical absorption, photoluminescence, photon-to-current conversion, photoinduced hydrophilicity and the difference of crystal transformation temperature, are summarized, and the preparation and assembly methods of titania nanosheets are introduced. Then, these new assembled materials and their properties are reviewed in detail by using thin flakes, nanotubes, hollow microspheres and complex films as representations. Afterwards, the modifications of titania nanosheets by doping with impurity ions are also introduced, and the relations between ions doing and properties of titania nanosheets are discussed from three aspects: extending the absorption edge of light, improving electron transfer rate and enhancing magnetooptical response. Finally, the future research trends of titania nanosheets are also suggested. Contents
1 Introduction
2 The properties of titania nanosheets
2.1 Optical absorption property
2.2 Photoluminescence property
2.3 Photon-to-current conversion property
2.4 Photoinduced hydrophilicity property
2.5 Crystal transformation temperature
3 Preparation of titania nanosheets
4 Assembly of titania nanosheets
5 New materials by assembling titania nanosheets
5.1 Thin flakes
5.2 Nanotubes
5.3 Hollow microspheres
5.4 Complex films
6 Modifications of titania nanosheets by doping
6.1 Extending the absorption edge of light
6.2 Improving electron transfer rate
6.3 Enhancing magnetooptical response
7 Conclusions and outlook

CLC Number: 

[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. PNAS, 2005, 102: 10451-10453
[2] Geim A K. Science, 2009, 324: 1530-1534
[3] Omomo Y, Sasaki T, Wang L, Watanabe M. J. Am. Chem. Soc., 2003, 125: 3568-3575
[4] Schaak R E, Mallouk T E. Chem. Mater., 2000, 12: 3427-3434
[5] Miyamoto N, Yamamoto H, Kaito R, Kuroda K. Chem. Commun., 2002, 2378-2379
[6] Sasaki T, Watanabe M. J. Phys. Chem. B, 1997, 101: 10159-10161
[7] Sasaki T, Watanabe M. J. Am. Chem. Soc., 1998, 120: 4682-4689
[8] Sasaki T, Ebina Y, Kitami Y, Watanabe M. J. Phys. Chem. B, 2001, 105: 6116-6121
[9] Wang Y, Sun C, Yan X, Xiu F, Wang L, Smith S C, Wang K L, Lu G Q, Zou J. J. Am. Chem. Soc., 2011, 133: 695-697
[10] Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. Chem. Mater., 2003, 15: 3564-3568
[11] Sakai N, Ebina Y, Takada K, Sasaki T. J. Am. Chem. Soc., 2004, 126: 5851-5858
[12] Osada M, Ebina Y, Takada K, Sasaki T. Adv. Mater., 2006, 18: 295-299
[13] Prato M. Nature, 2010, 465: 172-173
[14] Chen J S, Tang Y L, Li C M, Cheah Y L, Luan D, Madhavi S, Boey F Y C, Archer L A, Lou X W. J. Am. Chem. Soc., 2010, 132: 6124-6130
[15] Saruwatari K, Sato H, Kogure T, Wakayama T, Iitake M, Akatsuka K, Haga M, Sasaki T, Yamagishi A. Langmuir, 2006, 22: 10066-10071
[16] Sakai N, Fukuda K, Shibata T, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. B, 2006, 110: 6198-6203
[17] Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T. Phys. Chem. Chem. Phys., 2007, 9: 2413-2420
[18] Ohwada M, Kimoto K, Suenaga K, Sato Y, Ebina Y, Sasaki T. J. Physic. Chem. Lett., 2011, 2(14): 1820-1823
[19] 刘旸(Liu Y). 北京化工大学硕士论文(Masteral Dissertation of Beijing University of Chemical Technology), 2008
[20] Sasaki T, Ebina Y, Watanabe M, Decher G. Chem. Commun., 2000, 2163-2164
[21] Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431-432
[22] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Adv. Mater., 1998, 10: 135-138
[23] Sasaki T, Ebina Y, Fukuda K, Tanaka T, Harada M, Watanabe M. Chem. Mater., 2002, 14: 3524-3530
[24] Umemura Y, Koura A, Nishioka T, Tanaka D, Shinohara E, Suzuki T, Sasaki T. J. Phys. Chem. C, 2010, 114: 19697-19703
[25] Wang C C, Ying J Y. Chem. Mater., 1999, 11: 3113-3120
[26] Fukuda K, Sasaki T, Watanabe M, Nakai I, Inaba K, Omote K. Cryst. Growth Des., 2003, 3(3): 281-283
[27] Fukuda K, Ebina Y, Shibata T, Aizawa T, Nakai I, Sasaki T. J. Am. Chem. Soc., 2007, 129: 202-209
[28] Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H. J. Am. Chem. Soc., 1996, 118: 8329-8335
[29] Unal U, Matsumoto Y, Tanaka N, Kimura Y, Tamoto N. J. Phys. Chem. B, 2003, 107: 12680-12689
[30] Coleman J N, Lotya M, O'Neill, Bergin S D, King P J, Khan U, Young K, Gaucher A., De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568-571
[31] Wu B, Guo C, Zheng N, Xie Z, Stucky G D. J. Am. Chem. Soc., 2008, 130: 17563-17567
[32] Fang M, Kaschak D M, Sutorik A C, Mallouk T E. J. Am. Chem. Soc., 1997, 119: 12184-12191
[33] Ida S, Ogata C, Shiga D, Izawa K, Ikeue K, Matsumoto Y. Angew. Chem. Int. Ed., 2008, 47: 2480-2483
[34] Choy J H, Lee H C, Jung H, Kim H, Boo H. Chem. Mater., 2002, 14: 2486-2491
[35] Xin H, Ebina Y, Ma R, Takada K, Sasaki T. J. Phys. Chem. B, 2006, 110: 9863-9868
[36] Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M. Chem. Mater., 2001, 13: 4661-4667
[37] Xue L, Kajiyoshi K, Yan Y. Thin Solid Films, 2009, 518: 10-15
[38] Sasaki T, Nakano S, Yamauchi S, Watanabe M. Chem. Mater., 1997, 9: 602-608
[39] Qian H, Greenhalgh E S, Shaffer M S P, Bismarck A. J. Mater. Chem., 2010, 20: 4751-4762
[40] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Progress in Chemistry), 2007, 19(1): 117-122
[41] 张文彦(Zhang W Y), 奚正平(Xi Z P), 李广忠(Li G Z), 李亚宁(Li Y N), 张健(Zhang J), 汤慧萍(Tang H P). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2009, 38(10): 1876-1880
[42] Yang L, Luo S, Cai Q, Yao S. Chinese Sci. Bull., 2010, 55(4/5): 331-338
[43] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 2904-2939
[44] Ma R, Bando Y, Sasaki T. J. Phys. Chem. B, 2004, 108: 2115-2119
[45] Iida M, Sasaki T, Watanabe M. Chem. Mater., 1998, 10: 3780-3782
[46] Wang L, Sasaki T, Ebina Y, Kurashima K, Watanabe M. Chem. Mater., 2002, 14: 4827-4832
[47] Wang L, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. B, 2004, 108: 4283-4288
[48] Sakai N, Prasad G K, Ebina Y, Takada K, Sasaki T. Chem. Mater., 2006, 18: 3596-3598
[49] Decher G. Science, 1997, 277: 1232-1237
[50] Wang Z -S, Ebina Y, Takada K, Watanabe M, Sasaki T. Langmuir, 2003, 19: 9534-9537
[51] Yui T, Tsuchino T, Akatsuka K, Yamauchi A, Kobayashi Y, Hattori T, Haga M, Takagi K. Bull. Chem. Soc. Jpn., 2006, 79(3): 386-396
[52] Zhou Y, Ma R, Ebina Y, Takada K, Sasaki T. Chem. Mater., 2006, 18: 1235-1239
[53] Sakai N, Sasaki T, Matsubara K, Tatsuma T. J. Mater. Chem., 2010, 20: 4371-4378
[54] Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. J. Am. Chem. Soc., 2007, 129: 8000-8007
[55] Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. C, 2008, 112: 5197-5202
[56] Chen X, Mao S S. Chem. Rev., 2007, 107: 2891-2959
[57] 石建稳(Shi J W), 陈少华(Chen S H), 王淑梅(Wang S M), 罗红元(Luo H Y). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(2): 251-258
[58] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271
[59] Khan S U M, Al-Shahry M, Ingler W B. Science, 2002, 297: 2243-2245
[60] 栾勇(Luan Y), 傅平丰(Fu P F), 戴学刚(Dai X G), 杜竹玮(Du Z W). 化学进展(Progress in Chemistry), 2004, 16(5): 738-746
[61] 刘中清(Liu Z Q), 葛昌纯(Ge C C). 化学进展(Progress in Chemistry), 2006, 18(3): 168-175
[62] Harada M, Sasaki T, Ebina Y, Watanabe M. J. Photoch. Photobio. A, 2002, 148: 273-276
[63] Shi L, Gao Q, Wu Y, Chen Z, Liu A. Biosens. Bioelectron., 2009, 25: 948-951
[64] Dong X, Fu J, Xi F. J. Mater. Res., 2011, 26: 1285-1291
[65] Liu G, Wang L, Sun C, Chen Z, Yan X, Cheng L, Cheng H M, Lu G Q. Chem. Commun., 2009, 1383-1385
[66] Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E, Sasaki T. Phys. Rev. B, 2006, 73: art. no. 153301
[67] Osada M, Ebina Y, Takada K, Sasaki T. Key Eng. Mater., 2008, 388: 119-122
[68] Osada M, Itose M, Ebina Y, Ono K, Ueda S, Kobayashi K, Sasaki T. Appl. Phys. Lett., 2008, 92: art. no. 253110
[69] Dong X, Osada M, Ueda H, Ebina Y, Kotani Y, Ono K, Ueda S, Kobayashi K, Takada K, Sasaki T. Chem. Mater., 2009, 21: 4366-4373
[70] Hirai T, Suzuki K, Komasawa I. J. Colloid Interf. Sci., 2001, 244: 262-265
[71] Yan X, Liu G, Wang L, Wang Y, Zhu X, Zou J, Lu G Q. J. Mater. Res., 2010, 25: 182-188
[72] 肖信(Xiao X), 张伟德(Zhang W D). 化学进展(Progress in Chemistry), 2011, 23(4): 657-668
[1] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[2] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.
[3] Wang Guiqiang, Duan Yandong, Zhang Juan, Lin Yuan, Zhuo Shuping. Doped Titania Nanocrystalline Photoanodes for Efficiency Improvement of Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2014, 26(07): 1255-1264.
[4] . Photochemistry Degradation of Organic Pollutants Polybrominated Diphenyl Ether Congeners and Cyanuric Acid [J]. Progress in Chemistry, 2009, 21(0203): 400-405.
[5]

Yang Xuyi|Huang Qiyu**

. Application of Organic Electrolytes in TiO2 Nanotubes Fabrication [J]. Progress in Chemistry, 2009, 21(01): 116-120.
[6] Tang Yuchao1,2**|Huang Xianhuai2|Yu Hanqing1|Hu Chun3. Nonmeatl Element Doping Mechanisms of Titanium Oxide Photocatalyst [J]. Progress in Chemistry, 2007, 19(0203): 225-233.
[7] Jiang Yan,Shen Yi,Wu Peiyi**. Application of ATR-FTIR Spectroscopy in Polymer Film Study [J]. Progress in Chemistry, 2007, 19(01): 173-185.
[8] Zhongqing Liu, Changchun Ge*. Photocatalysis of Nonmetal Modified TiO2 Induced by Visible Light [J]. Progress in Chemistry, 2006, 18(0203): 168-175.
[9] . Recent Progress in Titania Photocatalyst Operating Under Visible Light [J]. Progress in Chemistry, 2005, 17(01): 8-14.
[10] Zhang Xianghua,Li Wenzhao**,Xu Hengyong,Liu Hong. Application of Zeolites in Photocatalysis [J]. Progress in Chemistry, 2004, 16(05): 728-.
[11] Liang Zhenpeng,Wang Chaoyang,Sun Qilong,Tong Zhen**. Novel Microcapsule Fabricated by LbL Nano Self-Assembly [J]. Progress in Chemistry, 2004, 16(04): 485-.
[12] Zhu Yihua**,Yang Xiaoling,Li Peiyong,Hu Ying. From Layer-by-Layer Assembled Core-Shell Particles to Medical/Biochemical Diagnostics and Drug Delivery [J]. Progress in Chemistry, 2003, 15(06): 512-.
[13] Cui Xiaoli,Jiang Zhiyu**. Advances in Preparation of the Films of TiO2 [J]. Progress in Chemistry, 2002, 14(05): 325-.
[14] Zhang Yihua,Wang Xiangsheng,Guo Xinwen. Development of Titanium Silicon Catalytic Materials.Preparation of Titania-Silica Mixed Oxides and Its Catalytic Properties [J]. Progress in Chemistry, 2001, 13(01): 19-.
Viewed
Full text


Abstract

Two-Dimensional Titania Nanosheets