中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (5): 1033-1040 Previous Articles   

• Review •

Stability of Supported Liquid Membranes for Metal Ion Extraction: State of the Art on Membrane Materials

Chen Yin1, Zhang Yunyan1, Li Xuemei2, Wang Wanjun2, He Tao1,2   

  1. 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;
    2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
  • Received: Revised: Online: Published:
PDF ( 1247 ) Cited
Export

EndNote

Ris

BibTeX

Supported liquid membranes (SLM) is a highly efficient separation technology combining membrane materials and liquid-liquid extraction. During operation, organic extractant tends to diffuse out of the SLM and the membrane materials degrades in organic extractant, leading to declined flux or selectivity. Due to the instable problem, large scale applications have not been realized yet. In this review, the mechanisms leading to the instability in supported liquid membrane are reviewed. Challenges and milestone of membrane materials in stabilizing the supported liquid membranes are discussed. The application of gelation, coating, interfacial polymerization and plasma coating, hydrophilic-hydrophobic composite material, and ion exchange membranes in stabilization of SLM were discussed in detail. The advantages and disadvantages of various materials in terms of stabilization of SLM were compared. Finally, a new type of membrane material, a sufonated polymer was evaluated as the coating polymer for the improvement of membrane permeability and stability. The sulfonated polymer coated composite membrane based membrane contactor system was introduced and the sulfonated polymer-based blend material is proposed as the new development direction for membrane materials to improve the liquid membrane stability. It is envisioned that the new type membrane material would find applications in separation and purification of precious metal ions and energy metal ions.

CLC Number: 

[1] 崔春花(Cui C H), 任钟旗(Ren Z Q), 杨彦强(Yang Y Q). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2008, 22(4): 679-683
[2] 文衍宣(Wen Y X), 王励生(Wang L S), 金作美(Jin Z M). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 1999, 13(6): 572-575
[3] Pan L, Zhang Z D. Minerals Engineering, 2009, 22(15): 1271-1276
[4] Bilge A, Sevil V. Journal of Hazardous Materials, 2009, 167(1/3): 482-488
[5] 杜军(Du J), 周堃(Zhou K), 陶长元(Tao C Y). 化学研究与应用(Chemical Research and Application), 2004, 16(2): 160-164
[6] Valenzuela F, Basualto C, Tapia C, Sapag J. Journal of Membrane Science, 1999, 155(1): 163-168
[7] Moreno C, Valiente M. Journal of Membrane Science, 1999, 155(1): 155-162
[8] 程飞(Cheng F), 古国榜(Gu G B), 张振民(Zhang Z M), 龙惕吾(Long T W), 庞双根(Pang S G). 华南理工大学学报(自然科学版)(Journal of South China University of Technology(Natural Science)), 1995, 5: 98-103
[9] Kedari C S, Pandit S S, Ramanujam A. Journal of Membrane Science, 1999, 156: 187-196
[10] 杨显万(Yang X W), 刘朗明(Liu L M). 中国有色金属学报(The Chinese Journal of Nonferrows Metals), 1993, 3: 30-34
[11] Yahaya G O, Brisdon B J, England R. Journal of Membrane Science, 2000, 168(1/2): 187-201
[12] Dzygiel P, Wieczorek P, Mathiasson L, Jnsson J. Analytical Letters, 1998, 31(7): 1261-1274
[13] Heard C M, Watkinson A C, Brain K R. Bioseparations, 1994, 4(2): 111-116
[14] Akira I, Shuhong D, Yoshiaki I, Akira O. Separation and Purification Technology, 2001, 24(1/2): 235-242
[15] Figoli A, Sager W F C, Mulder M H V. Journal of Membrane Science, 2001, 181(1): 97-110
[16] Malcus F, Djane N K, Mathiasson L, Johansson G. Analytica Chimica Acta, 1996, 327(3): 295-300
[17] Matthey J. Platinum Metals Review, 2007, 51(Compendex): 45
[18] Li N N, Somerset N J. US 3410794, 1968
[19] Li N N. Journal of Membrane Science, 1978, 3(2): 265-269
[20] Kocherginsky N M, Yang Q, Seelam L. Separation and Purification Technology, 2007, 53(2): 171-177
[21] Kemperman A J B, Bargeman D, Boomgaard T V D, Strathmann H. Separation Science and Technology, 1996, 31(20): 2733-2762
[22] Neplenbroek A M, Bargeman D, Smolders C A. Journal of Membrane Science, 1992, 67(2/3): 121-132
[23] Danesi P R, Reichley Yinger L, Rickert P G. Journal of Membrane Science, 1987, 31(2/3): 117-145
[24] Fabiani C, Merigiola M, Scibona G, Castagnola A M. Journal of Membrane Science, 1987, 30(1): 97-104
[25] Neplenbroek A M, Bargeman D, Smolders C A. Journal of Membrane Science, 1992, 67(2/3): 149-165
[26] Kemperman A J B, Damink B, Boomgaard T V D, Strathmann H. Journal of Applied Polymer Science, 1997, 65(6): 1205-1216
[27] Kemperman A J B, Rolevink H H M, Bargeman D, van den Boomgaard T, Strathmann H. Journal of Membrane Science, 1998, 138(1): 43-55
[28] Wijers M C, Wessling M, Strathmann H. Separation and Purification Technology, 1999, 17(2): 147-157
[29] Wang Y, Thio Y S, M. Doyle F. Journal of Membrane Science, 1998, 147(1): 109-116
[30] Yang X J, Fane A G, Bi J, Griesser H J. Journal of Membrane Science, 2000, 168(1/2): 29-37
[31] Sirkar K K, Reed B W. EP0771585, 1997
[32] Sirkar K. US5053132, 1991
[33] He T. Desalination, 2008, 225(1/3): 82-94
[34] Molinari R, Argurio P, Pirillo F. Journal of Membrane Science, 2005, 256(1/2): 158-168
[35] Kedem O, Bromberg L. Journal of Membrane Science, 1993, 78(3): 255-264
[36] Wijers M C, Jin M, Wessling M, Strathmann H. Journal of Membrane Science, 1998, 147(1): 117-130
[37] He T, Versteeg L A M, Mulder M H V, Wessling M. Journal of Membrane Science, 2004, 234(1/2): 1-10
[38] He T. Doctoral Dissertation of University of Twente, 2001
[39] Ho S V. Industrial Environmental Chemistry, 1992, 229-245
[40] Ho W S W, Wang B. Industrial & Engineering Chemistry Research, 2002, 41(3): 381-388
[41] Ho W S W. New York Academy of Sciences, 2003, 2003(984): 97-122
[42] de los Ríos A P, Hernández-Fernández F J, Tomás-Alonso F, Palacios J M, Víllora G. Desalination, 2009, 245(1/3): 776-782
[43] Hernández-Fernández F J, de los Ríos A P, Rubio M, Tomás-Alonso F, Gómez D, Víllora G. Journal of Membrane Science, 2007, 293(1/2): 73-80
[44] Hernández-Fernández F J, de los Ríos A P, Tomás-Alonso F, Gómez D, Víllora G. Desalination, 2009, 244(1/3): 122-129
[45] Fontàs C, Tayeb R, Dhahbi M, Gaudichet E, Thominette F, Roy P, Steenkeste K, Fontaine-Aupart M P, Tingry S, Tronel-Peyroz E, Seta P. Journal of Membrane Science, 2007, 290(1/2): 62-72
[46] Fontàs C, Tayeb R, Tingry S, Hidalgo M, Seta P. Journal of Membrane Science, 2005, 263(1/2): 96-102
[47] 何涛(He T). CN101264427A, 2009

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[14] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[15] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.