中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 1901-1910 Previous Articles   Next Articles

• Review •

Preparation of CdSe Nanocrystals with Special Morphologies

Zhang JuzhengGao Shanmin1,2**  Huang Baibiao Dai Ying2   Wang Ju1   Lu Juan1   

  1. (1.School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; 2. State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China)
  • Received: Revised: Online: Published:
  • Contact: Gao Shanmin E-mail:gaosm@ustc.edu
PDF ( 1938 ) Cited
Export

EndNote

Ris

BibTeX

As an important II-VI group semiconductor material, CdSe nanocrystals have drawn much attention recently due to its unique size-dependent fluorescence tunable across the visible spectrum. CdSe semiconductor nanocrystals exhibit great potential used as a new type of fluorescence materials and labeling material for biological research. Various preparation methods have been developed to synthesize differently size and morphology CdSe nanocrystals. With the different preparing methods, the diameter, phase structure, morphologies uniformity, and properties are also different accordingly. In this paper, the seven typical methods of preparation and control of morphology of CdSe nanocrystals are summarized in detail. Meanwhile, their corresponding strongpoints and weaknesses are also reviewed. The challenges about preparing CdSe nanocrystals are figured out and the future directions are also proposed.

Contents
1 Introduction
2 Preparation methods of CdSe nanocrystals
2.1 Organic liquid synthesis method
2.2 Low temperature water solution method
2.3 Template electrochemical deposition method
2.4 Vapor deposition method
2.5 Hydrothermal and solvothermal methods
2.6 Irradiation chemical method
2.7 Self-assembly technology
3 Conclusions and prospects

[1] 邓志杰(Deng Z J),郑安生(Zheng A S). 半导体材料(Semiconductor Materials). 北京: 化学工业出版社(Beijing: Chemical Inductor Press), 2004: 65-74. [2] Kazes M, Lewis D Y, Ebenstein Y, Mokari T, Banin U. Adv. Mater., 2002, 14(4): 317-321. [3] Schierhorn M, Boettcher S W, Ivanovskaya, A, Norvell E, Sherman J B, Stucky G D, Moskovits M. J. Phys. Chem. C, 2008, 112(23): 8516-8520. [4] Peng J J, Liu S P, Wang L, Liu X W, He Y Q. J. Colloid and Interface Sci., 2009, 338(2): 578–583. [5] Lee S K C, Yu Y H, Perez O, Puscas S, Kosel T H, Kuno M. Chem. Mater., 2010, 22(1): 77-84. [6] Zhang Y F, You L P, Shan X D, Wei X L, Hou H B, Xu W J, Dai L. J. Phys. Chem. C, 2007, 111(39): 14343-14347. [7] Zotti G, Vercelli B, Berlin A, Chin P T K, Giovanella U. Chem. Mater., 2009, 21(11): 2258–2271. [8] Alivisatos A P. Science, 1996, 271(5251): 933-937. [9] Burda C, Chen X B, Narayanan R, EI-Sayed M A. Chem. Rev., 2005, 105(4): 1025-1102. [10] Hu J T, Li L S, Yang W D, Manna L, Wang L, Alivisatos A P. Science, 2001, 292(5524): 2060-2063. [11] Li J B, Wang L W. Nano. Lett., 2003, 3(10): 1357-1363. [12] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(7): 1389-1395. [13] Pradhan N, Xu H F, Peng X G. Nano. Lett., 2006, 6 (4): 720–724. [14] Cheng J H, Chao H Y, Chang H Y, Hsu C H, Cheng C L, Chen T T, Chen Y F, Chu M W. Physica E, 2008, 40(6): 2000–2003. [15] Peng Q, Dong Y J, Deng Z X, Li Y D. Inorg. Chem., 2002, 41(20): 5249-5254. [16] Manna L, Milliron D J, Meisel A, Scher E C, Alivisatos A P. Nature Mater., 2003, 2(6): 382-385. [17] Venugopal R, Lin P-I, Liu C C, Chen Y –T. J. Am. Chem. Soc., 2005, 127(32): 11262-11268. [18] Cheng J H, Chao H Y, Chang Y H, Hsu C H, Cheng C L, Chu M W, Chen Y F. Appl. Phys. A: Mater. Sci. & Processing, 2009, 97(1): 79–83. [19] Ma C, Ding Y, Moore D, Wang X D, Wang Z L. J. Am. Chem. Soc., 2004, 126(3): 708-709. [20] Zhao N N, Liu K, Greener J, Nie Z H, Kumacheva E. Nano. Lett., 2009, 9(8): 3077-3081. [21] Murray C B, Noms D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115(19): 8706-8715. [22] Alam M M, Mushfiq M, Han H, Bhowmik P K, Goswami K. Macromolecules, 2008, 41(21): 7790-7793. [23] Wang F D, Tang R, Buhro, W E. Nano. Lett., 2008, 8(10): 3521-3524. [24] Zhang C X, O`Brien S, Balogh L. J. Phys. Chem. B, 2002, 106(40): 10316-10321. [25] Shen L, Soong R, Wang M F, Lee A, Wu C, Scholes G D, Macdonald P M, Winnik M A. J. Phys. Chem. B, 2008, 112(6): 1626-1633. [26] Wang M F, Felorzabihi N, Guerin G, Haley J C, Scholes G D, Winnik M A. Macromolecules, 2007, 40(17): 6377-6384. [27] Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich J W, Lin Z Q. J. Am. Chem. Soc., 2007, 129(42): 12828-12833. [28] Zhang Q L, Russell T P, Emrick T. Chem. Mater., 2007, 19(15): 3712-3716. [29] Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124(13): 3343-3353. [30] Peng X G. Adv. Mater., 2003, 15(5): 459-463. [31] Wang W, Banerjee S, Jia S G, Steigerwald M L, Herman I P. Chem. Mater., 2007, 19(10): 2573-2580. [32] Xi L F, Lam Y M. Chem. Mater., 2009, 21(15): 3710–3718. [33] Wang F D, Tang R, Kao J L -F, Dingman S D, Buhro W E. J. Am. Chem. Soc., 2009, 131 (13): 4983–4994. [34] Zhou X P, Kobayashi Y, Romanyuk V, Ochuchi N, Takeda M, Tsunekawa S, Kasuya A. Appl. Sur. Sci., 2005, 242(3-4): 281–286. [35] Chu M Q, Sun Y, Shen X Y, Liu G J. Physica E, 2006, 35(1): 75–80. [36] Zhang B B, Gong X Q, Hao L J, ChenG J, Han Y, Chang J. Nanotechnology, 2008, 19(46): 1-9. [37] Sharma H, Sharma S N, Kumar U, Singh V N, Mehta B R, Singh G, Shivaprasad S M, Kakkar R. J. Mater. Sci.: Mater. Medicine, 2009, 20(1): 123-130. [38] Rogach A L, Kornowski A, Gao M Y, Eychmuller A, Weller H S. J. Phys. Chem. B, 1999, 103(16): 3065-3069. [39] Chen X F, Hutchison J L, Dobson P J, Wakefield G. J. Colloid and Interface Sci., 2008, 319(1): 140–143. [40] Li J H, Ren C L, Liu X Y, Hu Z D, Xue D S. Mater. Sci. Eng. A, 2007, 458(1-2): 319–322. [41] Shim H S, Shinde V R, Kim J W, Gujar T P, Joo O – S, Kim H J, Kim W B. Chem. Mater., 2009, 21(9): 1875-1883. [42] Shinde V R, Gujar T P, Noda T, Fujita D, Lokhande C D, Joo O – S. J. Phys. Chem. C, 2009, 113(32): 14179–14183. [43] Xu D S, Shi X S, Guo G L, Gui L L, Tang Y Q. J. Phys. Chem. B, 2000, 104(21): 5061-5063. [44] Sun H Y, Li X H, Chen Y, Guo D F, Xie Y W, Li W, Liu B T, Zhang X Y. Nanotechnology, 2009, 20(42): 1-8. [45] Zhang H, Quan X, Chen S, Yu H T, Ma N. Chem. Mater., 2009, 21 (14): 3090–3095. [46] Gudage Y G, Deshpande N G, Sagade A A, Sharma R P, Pawar S M, Bhosale C H. Bull. Mater. Sci., 2007, 30(4): 321–327. [47] Shaikh A V, Mane R S, Pathan H M, Min B –K, Joo O –S, Han S –H. J. Electroanal. Chem., 2008, 615(2): 175-179. [48] Schierhorn M, Boettcher S W, Kraemer S, Stucky G D, Moskovits M. Nano. Lett., 2009, 9(9): 3262-3267. [49] Su Y W, Wu C S, Chen C C, Chen C D. Adv. Mater., 2003, 15(1): 49-51. [50] Zhou M J, Zhu H J, Wang X N, Xu Y M, Tao Y, Hark S, Xiao X D, Li Q. Chem. Mater., 2010, 22(1): 64-69. [51] Kim Y L, Jung J H, Kim K H, Yoon H S, Song M S, Bae S H, Kin Y. Nanotechnology, 2009, 20(9): 1-7. [52] Liu C, Wu P C, Sun T, Dai L, Ye Y, Ma R M, Qin G G. J. Phys. Chem. C, 2009, 113 (32): 14478–14481. [53] Wang W Z, Geng Y, Yan P, Liu F Y, Xie Y, Qian Y T. J. Am. Chem. Soc., 1999, 121(16): 4062-4063. [54] Yang Q, Tang K B, Wang C R, Qian Y T, Zhang S Y. J. Phys. Chem. B, 2002, 106(36): 9227-9230. [55] Yao W T, Yu S H, Liu S J, Chen J P, Liu X M, Li F Q. J. Phys. Chem. B, 2006, 110(24): 11704–11710. [56] Yu S H, Wu Y S, Yang J, Han Z H, Xie Y, Qian Y T, Liu X M. Chem. Mater., 1998, 10(9): 2309-2312. [57] 刘勇(Xu Y), 徐耀(Xu Y), 李军平(Li J P), 章斌(Zhang B), 吴东(Wu D), 孙予罕(Sun Y H).化学学报(Acta Chimica Sinica), 2005, 63(21): 2017-2020. [58] Gao F, Lu Q Y, Xie S H, Zhao D Y. Adv. Mater., 2002, 14(21): 1537-1540. [59] Peng Q, Dong Y J, Deng Z X Sun X M, Li Y D. Inorg. Chem., 2001, 40(16): 3840-3841. [60] Xi L F, Lam Y M, Xu Y P, Li L J. J. Colloid and Interface Sci., 2008, 320(2): 491–500. [61] Liu X D, Peng P, Ma J M, Zheng W J. Mater. Lett., 2009, 63(8): 673–675. [62] Washington A L, Strouse G F. Chem. Mater., 2009, 21(13): 2770–2776. [63] Zhu J J, Xu S, Wang H, Zhu J M, Chen H Y. Adv. Mater., 2003, 15(2): 156-159. [64] Qiao Z P, Xie Y, Huang J X, Zhu Y J, Qian Y T. Radiation Phys. Chem., 2000, 58(3): 287-292. [65] Hu Y, Chen J F, Chen W M, Ning J Q. Mater. Lett., 2004, 58(22-23): 2911–2913. [66] Schumacher W, Nagy A, Waldman W J, Dutta P K. J. Phys. Chem. C, 2009, 113(28): 12132–12139. [67] 谢毅(Xie Y), 无机化学学报(Chinese Journal of Inorganic Chemistry), 2002, 18(1): 1-7. [68] 刘欢(Liu H), 翟锦(Zhai J), 江雷(Jiang L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2006, 22(4): 587-597. [69] 董红星(Dong H X), 杨振(Yang Z), 杨文玉(Yang W Y), 尹文艳(Yin W Y), 宋玉哲(Song Y Z), 杨合情(Yang H Q).化学进展(Progress in Chemistry), 2006, 18(12): 1608-1614. [70] Kim M R, Park S Y, Jang D J. Adv. Funct.Mater., 2009, 19(24): 3910-3916. [71] Son J S, Wen X D, Joo J, Chae J, Baek S, Park K, Kim J H, An K, Yu J H, Kwon S G, Choi S -H, Wang Z W, Kim Y -W, Kuk Y, Hoffmann R, Hyeon T. Angew. Chem. Inter. Ed., 2009, 48(37): 6861-6864 [72] 郭应臣(Guo Y C), 卓立宏(Zhuo L H), 黄群增(Huang Q Z), 赵一阳(Zhao Y Y).无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(8): 1316-1319. [73] Gattas-Asfura K M, Constantine C A, Lynn M J, Thimann D A, Ji X J, Leblanc R M. J. Am. Chem. Soc., 2005, 127(42): 14640-14646.

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[8] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[9] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[10] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[11] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[12] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[13] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.