中文
Announcement
More
Progress in Chemistry 2009, Vol. 21 Issue (04): 637-643 Previous Articles   Next Articles

• Review •

Coiled Carbon Nanotubes

Huang Jiaqi; Zhang Qiang; Wei Fei**   

  1. (Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China)
  • Received: Revised: Online: Published:
  • Contact: Wei Fei E-mail:wf-dce@tsinghua.edu.cn
PDF ( 2453 ) Cited
Export

EndNote

Ris

BibTeX

Coiled carbon nanotubes (CCNTs) are CNTs with spiral structure. The CCNTs possesses unique properties of helix, chirality and nonlinear mechanical behavior. It attracts great interests in the synthesis, growth mechanisms and application developments. The CCNTs is commonly synthesized by catalyst-supported chemical vapor deposition (CVD) and floating catalyst CVD. The selective production of CCNTs has been achieved. Based on the analysis of the formation mechanism of CCNTs, the prospects on structure modulation of CCNTs are investigated. The challenges in this field include delicate control of parameters in structure, the synthesis of CCNTs in ring, double helix and the selective production of CCNTs with chirality. Due to the unique properties, some CCNTs have potential applications in nano-electromechanical devices, composite reinforcements, etc. The applications based on single CCNT, CCNTs array and macroscopic quantity of CCNTs are briefly outlined as well.

Content
1 Introduction
2 CCNTs synthesis
2.1 Chemical vapor deposition with supported catalyst
2.2 Chemical vapor deposition with floating catalyst
3 Formation mechanism and structure modulations
3.1 Formation mechanism of CCNTs
3.2 Structure modulations of CCNTs
4 Applications of CCNTs
4.1 Application based on single CCNT
4.2 Application based on CCNTs array
4.3 Application based on macroscopic quantity of CCNTs
5 Conclusions

CLC Number: 

[ 1 ]  Iijima S. Nature , 1991 , 354 : 56 —58
[ 2 ]  Dunlap B I. Phys. Rev. B , 1992 , 46 (3) : 1933 —1936
[ 3 ]  Ihara S , Itoh S. Phys. Rev. B , 1993 , 48 (8) : 5643 —5647
[ 4 ]  Zhang X B , Zhang X F , Bernaerts D , et al . Europhys. Lett . ,1994 , 27 (2) : 141 —146
[ 5 ]  Baughman R H , Zakhidov A A , de Heer W. Science , 2002 , 297(5582) : 787 —792
[ 6 ]  Wei F , Zhang Q , Qian W Z, et al . Powder Technol . , 2008 , 183(1) : 10 —20
[ 7 ]  Motojima S , Asakura S , Iwanage H. J . Mater. Sci . , 1995 , 30 :5049 —5055
[ 8 ]  Motojima S , Chen X Q. J . Appl . Phys. , 1999 , 85 (7) : 3919 —3921
[ 9 ]  Wen Y K, Shen ZM. Carbon , 2001 , 39 (15) : 2369 —2374
[10 ]  Lu M, Liu WM, Guo X Y, et al . Carbon , 2004 , 42 (4) : 805 —811
[11 ]  Pan L J , Hayashida T, Harada A , et al . Physica B , 2002 , 323 (1/4) : 350 —351
[12 ]  Gao R P , Wang ZL , Fan S S. J . Phys. Chem. B , 2000 , 104 (6) :1227 —1234
[13 ]  Bai J B. Mater. Lett . , 2003 , 57 (18) : 2629 —2633
[14 ]  Zhong D Y, Liu S , Wang E G. Appl . Phys. Lett . , 2003 , 83 (21) :4423 —4425
[15 ]  Hou H Q , Jun Z, Weller F , et al . Chem. Mater. , 2003 , 15 (16) :3170 —3175
[16 ]  Bajpai V , Dai L M, Ohashi T. J . Am. Chem. Soc. , 2004 , 126(16) : 5070 —5071
[17 ]  Wang W, Yang K Q , Gaillard J , et al . Adv. Mater. , 2008 , 20 :179 —182
[18 ]  Wang J N , Su L F , Wu Z P. Cryst . Growth Des. , 2008 , 8 (5) :1741 —1747
[19 ]  Amelinckx S , Zhang X B , Bernaerts D , et al . Science , 1994 , 265(5172) : 635 —639
[20 ]  Chen X Q , Kusunoki M, Motojima S. J . Mater. Res. , 1999 , 14(11) : 4329 —4336
[21 ]  杜金红(Du J H) , 苏革(Su G) , 白朔(Bai S) 等. 中国科学E 辑(Science in China (Series E) ) , 2003 , 33 (7) : 604 —608
[22 ]  毕辉(Bi H) , 寇开昌(Kou K C) , 张教强(Zhang J Q) . 炭素技术(Carbon Techniques) , 2006 , 25 (2) : 23 —28
[23 ]  Kawaguchi M, Nozaki K, Motojima S , et al . J . Cryst . Growth ,1992 , 118 (3P4) : 309 —313
[24 ]  Okazaki N , Hosokawa S , Goto T, et al . J . Phys. Chem. B , 2005 ,109 (37) : 17366 —17371
[25 ]  Chang N K, Chang S H. Carbon , 2008 , 46 (7) : 1106 —1109
[26 ]  Yang S M, Ozeki I , Chen X Q , et al . Thin Solid Films , 2008 , 516(5) : 718 —721
[27 ]  Zhao D L , Shen Z M. Mater. Lett . , 2008 , 62 (21P22) : 3704 —3706
[28 ]  Huang J Q , Zhang Q , Wei F , et al . Carbon , 2008 , 46 (2) : 291 —296
[29 ]  Qian W Z, Wei F , Liu T, et al . J . Chem. Phys. , 2003 , 118 (2) :878 —882
[30 ]  Yang S , Chen X, Kikuchi N , et al . Mater. Lett . , 2008 , 62 (10/11) : 1462 —1465
[31 ]  Zhang Q , Zhou W P , Qian W Z, et al . J . Phys. Chem. C , 2007 ,111 (40) : 14638 —14643
[32 ]  Biro L P , Ehlich R , Osvath Z, et al . Mat . Sci . Eng. C2Bio. S. ,2002 , 19 : 3 —7
[33 ]  Szabo A , Fonseca A , Nagy J B , et al . Carbon , 2005 , 43 ( 8) :1628 —1633
[34 ]  Luo T, Liu J , Chen L , et al . Carbon , 2005 , 43 (4) : 755 —759
[35 ]  Valles C , Perez-Mendoza M, Castell P , et al . Nanotechnology ,2006 , 17 (17) : 4292 —4299
[36 ]  Tang NJ , Zhong W, Au C T, et al . Adv. Funct . Mater. , 2007 , 17(9) : 1542 —1550
[37 ]  Blank V D , Kulnitskiy B A. Carbon , 2004 , 42 (14) : 3009 —3011
[38 ]  Liu J , Dai H J , Hafner J H , et al . Nature , 1997 , 385 (6619) :780 —781
[39 ]  Martel R , Shea H R , Avouris P. J . Phys. Chem. B , 1999 , 103(36) : 7551 —7556
[40 ]  Song L , Sun L F , Jin C H , et al . Adv. Mater. , 2006 , 18 : 1817 —1821
[41 ]  Yu H , Zhang Q F , Luo G H , et al . Appl . Phys. Lett . , 2006 , 89 :art . no. 223106
[42 ]  Zhang Q , Yu H , Liu Y, et al . Nano , 2008 , 3 (1) : 45 —50
[43 ]  Poncharal P , Wang Z L , Ugarte D , et al . Science , 1999 , 283(5407) : 1513 —1516
[44 ]  Witkamp B , Poot M, van der Zant H S J . Nano. Lett . , 2006 , 6(12) : 2904 —2908
[45 ]  Volodin A , Buntinx D , AhlskogM, et al . Nano Lett . , 2004 , 4 (9) :1775 —1779
[46 ]  Daraio C , Nesterenko V F , Jin S , et al . J . Appl . Phys. , 2006 ,100 : art . no. 0643096
[47 ]  Coluci V R , Fonseca A F , Galvao D S , et al . Phys. Rev. Lett . ,2008 , 100 (8) : art . no. 086807
[48 ]  Qian D , Dickey E C , Andrews R , et al . Appl . Phys. Lett . , 2000 ,76 (20) : 2868 —2870
[49 ]  Lu M, Lau K T, Xu J C , et al . Colloid Surface A , 2005 , 257/258 :339 —343
[50 ]  Lau K T, Lu M, Hui D. Compos. Part B-Eng. , 2006 , 37 (6) :437 —448
[51 ]  Lau K T, Gu C , Hui D. Compos. Part B-Eng. , 2006 , 37 (6) :425 —436

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[14] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
Viewed
Full text


Abstract

Coiled Carbon Nanotubes