中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 135-156 Previous Articles   Next Articles

• Review •

Fabrication Strategies to Self-Healing Silicone Materials

Juan Ye1, Ziqian Lin1, Weijian Li1, Hongping Xiang1(), Minzhi Rong2, Mingqiu Zhang2   

  1. 1 Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology,Guangzhou 510006, China
    2 Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University,Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xianghongping@gdut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52033011); National Natural Science Foundation of China(52273104); Guangdong Basic and Applied Basic Research Foundation(2022A1515011972)
Richhtml ( 34 ) PDF ( 460 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, inspired by the natural phenomenon that the living organism can automatically repair its damaged skin and bone via itself metabolism, researchers have successfully developed self-healing materials that can self-heal their microcracks. The self-healing of materials can effectively extend the service life of materials, improve working stability and thus reduce the waste of resources. Recently, the self-healable silicone materials originated from the synergistic combination of self-healing function and good properties of silicone materials, have become a research focus in functional materials. Furthermore, since the external stimuli such as UV irradiation, temperature and solvent are the external driving force for materials to fulfill self-healability, and affect largely the self-healing efficiency. More importantly, different stimuli have different advantages and disadvantages, and application fields. Therefore, this study aims to summarize and analyze the research progress of extrinsic and intrinsic self-healing silicone materials especially in the past five years according to their external stimuli. The intrinsic self-healing silicone materials that contain different dynamic polysiloxane crosslinking networks activated by different external stimuli, are emphatically discussed. Additionally, a brief prospect for the future development of self-healing silicone materials is also provided.

Contents

1 Introduction

2 Extrinsic self-healing silicone materials

2.1 Hydrolytic condensation crosslinking

2.2 Hydrosilylation crosslinking

2.3 Photo-crosslinking

3 Intrinsic self-healing silicone materials

3.1 Thermal-activated self-healing silicone materials

3.2 Photo-activated self-healing silicone materials

3.3 Medium-driven self-healing silicone materials

4 Conclusion and outlook

Fig. 1 (a) Mechanism of microcapsule self-healing materials: crack formation, the microcapsule breaking and releasing the healing agent, and the healing agent reacting with catalyst to realize healing[19]; (b) schematic diagram of different dynamic reversible structures used in intrinsic self-healing materials[25]
Fig. 2 (a) Schematic illustration of the melamine-urea-formaldehyde shell-forming reaction and condensation polymerization of PDMS in the presence of the DBTL catalyst; (b) self-healing of the dual-microcapsule-integrated silicone composite at room temperature for 24 h after cracking[27]
Fig. 3 (a) The self-healing procedures with dual capsule systems; (b) the crosslinking reaction between Sylgard 184 Part A and hydrogen silicone oil by hydrosilylation[29]
Fig. 4 Mechanism of self-healing silicone resin with CS-RGO microcapsules[31]
Fig. 5 Intrinsic self-healing silicone materials based on different stimulus-response factors
Fig. 6 (a) Synthesis of PDMS-PUa; (b) self-repairing process of PDMS-PUa with 5.0 wt% DCOIT at room temperature; (c) images of the tested panels coated with PDMS-PUa/DCOIT after immersion in seawater for 90 and 180 d[43]
Fig. 7 (a) The chemical structure of PDPU elastomer; (b) the microscope images of self-healing PDPU; (c) output voltages of gaS-Solid interacted triboelectric nanogenerators based on the PDPU before damage and after healing; (d) the sensing performance of self-powered electronic skin based on PDPU[44]
Fig. 8 Self-healing mechanism of PDMS elastomer based on reversible dissociation/association of multivalent hydrogen bonds[46]
Fig. 9 (a) Preparation of polysiloxane elastomer PMFS containing DA bonds; (b) schematic illustration of self-healing process[48]
Fig. 10 (a) Synthesis of silicone oligomer with reactive motifs; (b) illustration of self-healing within the graphene-reinforced polysiloxane nanocomposite[50]
Fig. 11 (a) Schematic structure of the PDMS-COO-Zn polymer network at different temperatures;(b) microscopic images of a film before (left) and after (right) healing at 80 ℃ for 4 h;(c) objects printed by PDMS-COO-Zn polymer and their applications[57]
Fig. 12 (a) The structure of polymer complex Zn(Hbimcp)2-PDMS; (b) energy dissipation process for [Zn(Hbimcp)2]2+; (c) photographs of a film before and after stretching; (d) optical image of a film sustaining a 1000 g load[58]
Fig. 13 (a) The dynamic crosslinked PDMS elastomer; (b) mechanisms of recycling and water-driven malleability[63]
Fig. 14 (a) Preparation of ionically crosslinked elastomers from PDMS-g-COOH and ZnO; (b) Self-healing images of the original (left), cut (middle) and re-hot-pressed (right) samples; (c) Stretching images of healed PDMS elastomer[65].
Fig. 15 (a) Schematic illustration of UV/thermal dual crosslinked silicone elastomers; (b) photographs for the self-healing and reprocessing of the silicone elastomers[66]
Fig. 16 (a) Synthesis process of PDMS-PU elastomer; (b) schematic illustration of the self-healing process within the PDMS-PU elastomer based on radical-mediated disulfide bonds exchange reaction under heating[74]
Fig. 17 (a) Synthetic route of PIH;(b)schematic diagram of self-healing process of PIH elastomer based on disulfide metathesis reaction. The dyed PIH-12.5 was cut in half, and self-healed for 3 h at 25 ℃. The healed film can load a mass of 50 g. (c) PIH composites with rapid room temperature self-healing function under the ablation of butane flame[76]
Fig. 18 (a) Schematic representation of the self-healing process of PDMS elastomer; (b) self-healing illustration of square sample cut into several pieces and healed sample being stretched[79]
Fig. 19 (a) Reversibility of Si—O—Si bonds in poly(silsesquioxane) containing TEA; (b) LSCM images showing the self-healing process of a scratch (50 μm in average width)[80]
Fig. 20 (a) Schematic representation of the self-healing mechanism for the blend based on π-π stacking; (b) SEM images of the fractured film under increasing temperature[81]
Fig. 21 (a) The proposed ideal structure of the supramolecular polymer network based on strong crosslinking H-bonds, weak crosslinking H-bonds, and disulfide metathesis; (b) photographs of film after self-healing and enabling high stretchability (left) and (right) self-healing of film in a 30% NaCl solution at -10 ℃[91]
Fig. 22 Mechanism of self-healing PDMS-SS-DOPA-Fe material and the performance of the flexible PDMS-SS-DOPA1-Fe2-based strain sensor[92]
Fig. 23 (a) Preparation of self-healing silicone elastomers (PDETAS-FBA) based on dual asymmetric dynamic cross-linked chain structure; (b) the self-healing and reprocessing of PDETAS-FBA[24]
Fig. 24 (a) Synthesis process of the crosslinked silicone elastomer containing disulfide bonds; (b) silicone elastomer recycled in solid state under sunlight[99]
Fig. 25 (a) Synthesis of disulfide-linked SEs; (b) self-repairing experiments of SE-3 under UV light (365 nm) for 30 min (ⅰ) or heating at 150 ℃ for 2 h (ⅱ); (c) bonding performance test[100]
Fig. 26 The schematic diagram of light-healing process of Zn(abpy)2 -PDMS[101]
Fig. 27 Mechanism of the water-enabled healing process[104]
Fig. 28 (a) Plasticization of ionic aggregate by CO2 gas activiated network rearrangement; (b) photograph of self-healing behavior of cherry blossom-shaped PDMS-75Na film at 26 ℃[105]
[1]
Marc P W, Georgette B S, Patrick H. Prog. Polym. Sci., 2018, 83: 97.

doi: 10.1016/j.progpolymsci.2018.06.001
[2]
Yilgör E, Yilgör I. Prog. Polym. Sci., 2014, 39: 1165.

doi: 10.1016/j.progpolymsci.2013.11.003
[3]
Markvicka E J, Bartlett M D, Huang X N, Majidi C. Nat. Mater., 2018, 17: 618.

doi: 10.1038/s41563-018-0084-7 pmid: 29784995
[4]
He W Q, Liu P, Zhang J Q, Yao X. Chem-Eur. J., 2018, 24(56): 14864.

doi: 10.1002/chem.201801368
[5]
Emel Y, Iskender Y. Prog. Polym. Sci., 2014, 39(6): 1165.

doi: 10.1016/j.progpolymsci.2013.11.003
[6]
Mazurek P, Vudayagiri S, Skov A L. Chem. Soc. Rew., 2019, 48(6): 1448.

doi: 10.1039/C8CS00963E
[7]
Mohammed M G, Kramer R. Adv. Mater., 2017, 29(19): 1604965.

doi: 10.1002/adma.201604965
[8]
Mazurek P, Brook M A, Skov A L. Langmuir, 2018, 34(38): 11559.

doi: 10.1021/acs.langmuir.8b02039 pmid: 30153731
[9]
Zhou H, Wang H X, Niu H T, Gestoss A, Wang X G, Lin T. Adv. Mater., 2012, 24(18): 2409.

doi: 10.1002/adma.201200184
[10]
Khoo C T K. J. Hand. Surg., 1993, 18(6): 679.
[11]
Cheng L, Yu D J, You J J, Long T, Chen S S, Zhou C J. Prog. Chem., 2018, 30(12): 1852.

doi: 10.7536/PC180312
(程龙, 于大江, 尤加健, 龙腾, 程素素, 周传健. 化学进展,2018, 30(12): 1852.).
[12]
Ying Y, Marek W U. Chem. Soc. Rev., 2014, 42(17): 7446.

doi: 10.1039/c3cs60109a
[13]
Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G. Corros. Sci., 2018, 144: 74.

doi: 10.1016/j.corsci.2018.08.005
[14]
Yang Y, Ding X C, Urban M W. Prog. Polym. Sci., 2015, 49: 34.
[15]
Ryan K R, Down M P, Banks C E. Chem. Eng. J., 2021, 403: 126162.

doi: 10.1016/j.cej.2020.126162
[16]
You Y, Peng W L, Xie P, Rong M Z, Zhang M Q, Liu D. Mater. Today, 2020, 33: 45.

doi: 10.1016/j.mattod.2019.09.005
[17]
Zhang M Q. Chinese J. Polym. Sci., 2022, 40: 1315.

doi: 10.1007/s10118-022-2870-6
[18]
Wang S, Urban M W. Nat. Rev. Mater., 2020, 5: 562.

doi: 10.1038/s41578-020-0202-4
[19]
Yuan Y C, Yin T, Rong M Z, Zhang M Q. Express Polym. Lett., 2008, 2: 238.

doi: 10.3144/expresspolymlett.2008.29
[20]
Xia D Y, Wang P, Ji X F, Khashab N M, Sessler J L, Huang F H. Chem. Rev., 2020, 120 (13): 6070.

doi: 10.1021/acs.chemrev.9b00839
[21]
Chakma P, Konkolewicz D. Angew. Chem. Int. Ed., 2019, 58(29): 9682.

doi: 10.1002/anie.201813525
[22]
Liu Z, Xiao D S, Liu G C, Xiang H P, Rong M Z, Zhang M Q. Prog. Org. Coat., 2021, 159: 106450.
[23]
Yi B, Wang S, Hou C S, Huang X, Cui J X, Yao X. Chem. Eng. J., 2021, 405: 127023.

doi: 10.1016/j.cej.2020.127023
[24]
Lin Z Q, Deng H Y, Hou Y, Liu X X, Xu R J, Xiang H P, Peng Z Q, Rong M Z, Zhang M Q. J. Mater. Chem. A, 2022, 10(20): 11019.

doi: 10.1039/D2TA01535H
[25]
Dahlke J, Zechel S, Hager M D, Schubert U S. Adv. Mater. Interfaces, 2018, 5(17): 1800051.

doi: 10.1002/admi.201800051
[26]
Rao Q Q, Chen K L, Wang C X. RSC Adv., 2016, 6(59): 53949.

doi: 10.1039/C6RA09582H
[27]
Anahita A, Reza J, Gelareh M. J. Appl. Polym. Sci., 2021, 139(8): 51670.

doi: 10.1002/app.51670
[28]
Michael W K, Sottos R W, Nancy R S. Adv. Funct. Mater., 2007, 17(14): 2399.

doi: 10.1002/adfm.200700086
[29]
Yin Z H, Guo J H, Qiao J X, Chem X M. Colloid Polym. Sci., 2020, 298(1): 67.

doi: 10.1007/s00396-019-04587-2
[30]
Song Y K, Jo Y H, Lim Y J, Cho S Y, Yu H C, Ryu B C, Lee S I, Chung C M. ACS. Appl. Mater. Inter., 2013, 5(4): 1378.

doi: 10.1021/am302728m
[31]
Zheng N, Liu J, Wang Y H, Li C M, Zhang Q Y. Prog. Org. Coat., 2021, 151: 106055.
[32]
Sun J Y, Li W, Li N, Zhan Y C, Tian L M, Wang Y M. Prog. Org. Coat., 2022, 164: 106689.
[33]
Islam S, Bhat G. Mater. Adv., 2021, 2(6): 1896.

doi: 10.1039/D0MA00873G
[34]
Gharakhloo M, Karbarz M. Eur. Polym. J., 2022, 165: 111004.

doi: 10.1016/j.eurpolymj.2022.111004
[35]
Li M, Dai S P, Dong X, Jiang Y Y, Ge J, Xu Y D, Yuan N Y, Ding J N. Langmuir, 2022, 38(4): 1560.

doi: 10.1021/acs.langmuir.1c03010
[36]
Luo X, Wu Y P, Guo M L, Yang X, Xie L Y, Lai J J, Li Z Y, Zhou H W. J. Appl. Polym. Sci., 2021, 18(33): 50827.
[37]
Zhang J S, Zhang C Q, Song F, Shang Q Q, Hu Y, Jia P U, Liu C G, Hu L H, Zhu G Q, Huang J, Zhou Y H. Chem. Eng. J., 2021, 429: 131848.

doi: 10.1016/j.cej.2021.131848
[38]
Chen J, Luo Z Y, An R, Marklund P, Bjorling M, Shi Y J. Small, 2022, 18: 2200532.

doi: 10.1002/smll.202200532
[39]
Chen M F, Liu Y Q, Wang J, Bai L J, Wang W X, Yang H W, Wei D L. Journal Ludong University, 2018, 34(02): 150.
(陈密发, 刘永泉, 王静, 柏良久, 王文香, 杨华伟, 魏东磊. 鲁东大学学报(自然科学版), 2018, 34(02): 150.).
[40]
Zhao L P, Li L S, Yang G, Wei B, Ma Y, Qu F. Biosens. Bioelectron., 2021, 194: 113597.

doi: 10.1016/j.bios.2021.113597
[41]
Shi J Z, Shi Z W, Dong Y C, Wu F, Liu D S. ACS. Appl. Bio. Mater., 2020, 3(5): 2827.

doi: 10.1021/acsabm.0c00081
[42]
Chen L, Peng H, Wei Y Y, Wang X Y, Jin Y J, Liu H T, Jiang Y. Macromol. Chem. Phys., 2019, 220(18): 1900280.

doi: 10.1002/macp.201900280
[43]
Liu C, Ma C F, Xie Q Y, Zhang G Z. J. Mater. Chem. A, 2017, 5(30): 15855.

doi: 10.1039/C7TA05241C
[44]
Xiong J Q, Thangavel G, Wang J X, Zhou X R, Lee P S. Sci. Adv., 2020, 6(29): 4246.
[45]
Ogliani E., Yu L., Javakhishvili I, Skov A L. RSC Adv., 2018, 8(15): 8285.

doi: 10.1039/C7RA13686B
[46]
Liu M J, Liu P, Lu G, Lu G, Xu Z T, Yao X. Angew. Chem. Int. Ed., 2018, 57(35): 11242.

doi: 10.1002/anie.201805206
[47]
Kuhl N, Bode S, Hager M D, Schubert U S. Adv. Polym. Sci., 2016, 273: 1.
[48]
Zhao J, Xu R, Luo G X, Wu J, Xia H S. J. Mater. Chem. B, 2016, 4(5): 982.

doi: 10.1039/C5TB02036K
[49]
Wang J K, Lv C, Li Z X, Zheng J P. Macromol. Mater. Eng., 2018, 303(6): 1800089.

doi: 10.1002/mame.201800089
[50]
Zhao L W, Jiang B, Huang Y D. J. Mater. Sci., 2019, 54(7): 5472.

doi: 10.1007/s10853-018-03233-6
[51]
Zhao L W, Jiang B, Huang Y D. J. Appl. Polym. Sci., 2019, 136(27): 47725.

doi: 10.1002/app.47725
[52]
Deng Z X, Wang H, Ma P X, Guo B L. Nanoscale, 2020, 12(3): 1224.

doi: 10.1039/C9NR09283H
[53]
Xu X W, Guyse J F R, Jerca V V, Hoogenboom R. Macromol. Rapid Commun., 2020, 41(1): 1900305.

doi: 10.1002/marc.201900305
[54]
Chen Y, Dai S, Zhu H, Hu H, Yuan N, Ding J. New. J. Chem., 2021, 45(1): 314.

doi: 10.1039/D0NJ04923A
[55]
Jia X Y, Mei J F, Lai J C, Li C H, You X Z. Macromol. Rapid Commun., 2016, 37(12): 952.

doi: 10.1002/marc.201600142
[56]
Rao Y L, Chortos A, Pfattner R, Lissel F, Chiu Y C, Feig V, Xu J, Kurosawa T, Gu X, Wang, C, He M Q, Chun J W. J. Am. Chem. Soc., 2016, 138(18): 6020.

doi: 10.1021/jacs.6b02428
[57]
Lai J C, Li L, Wang D P, Zhang M H, Mo S R, Wang X, Zeng K Y, Li C H, Jiang Q, You X Z, Zuo J L. Nat. Commun., 2018, 9(1): 2725.

doi: 10.1038/s41467-018-05285-3 pmid: 30006515
[58]
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N. Nat. Commun., 2019, 10(1): 1164.

doi: 10.1038/s41467-019-09130-z
[59]
Bai L, Qv P Y, Zheng J P. J. Mater. Sci., 2020, 55(28): 14045.

doi: 10.1007/s10853-020-04997-6
[60]
Tan H Y, Lyu Q Q, Xie Z J, Li M M, Wang K, Wang K, Xiong B J, Zhang L B, Zhu J T. Adv. Mater., 2019, 31(6): 1805496.
[61]
Zhang B L, Zhang P, Zhang H Z, Yan C, Zheng Z J, Wu B, Yu Y. Macromol. Rapid Commun., 2017, 38(15): 1700110.

doi: 10.1002/marc.201700110
[62]
Lei X Y, Huang Y W, Liang S, Zhao X L, Liu L L. Mater. Lett., 2020, 268: 127598.

doi: 10.1016/j.matlet.2020.127598
[63]
Feng Z B, Yu B, Hu J, Zuo H L, Li J P, Sun H B, Ning N Y, Tian M, Zhang L Q. Ind. Eng. Chem. Res., 2019, 58(3): 1212.

doi: 10.1021/acs.iecr.8b05309
[64]
Wang N, Feng L, Xu X D, Feng S Y. Macrom. Rapid Commun., 2022, 43(7): 2100885.

doi: 10.1002/marc.202100885
[65]
Shi J, Zhao N, Yan D, Song J, Fu W, Li Z. J. Mater. Chem. A, 2020, 8(12): 5943.

doi: 10.1039/D0TA01593H
[66]
Liu Z, Hong P, Huang Z Y, Zhang T, Xu R J, Chen L J, Xiang H P, Liu X X. Chem. Eng. J., 2020, 387: 124142.

doi: 10.1016/j.cej.2020.124142
[67]
Guo R W, Su Q, Zhang J W, Dong A J, Lin C G, Zhang J H. Biomacromolecules, 2017, 18(4): 1356.

doi: 10.1021/acs.biomac.7b00089
[68]
Deng G H, Li F Y, Yu H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M. ACS Macro. Lett., 2012, 1(2): 275.

doi: 10.1021/mz200195n
[69]
Zhang Y D Y, Ding Z Y, Liu Y, Zhang Y P, Jiang S M. J. Colloid Interf. Sci., 2021, 582: 825.

doi: 10.1016/j.jcis.2020.08.080
[70]
Ding J, Qiao Z, Zhang Y S, Wei D R, Chen S P, Tang J J, Chen Lu, Wei D, Sun J, Fan H S. Carbohydr. Polym., 2020, 247: 116686.

doi: 10.1016/j.carbpol.2020.116686
[71]
Xu W Y, Wang W, Chen S M, Zhang R, Wang Y X, Zhang Q, Yuwen L, Yang W L, Wang L H. J. Colloid Interf. Sci., 2021, 586: 601.

doi: 10.1016/j.jcis.2020.10.128
[72]
Huang X W, Wang X F, Shi C Y, Liu Y, Wei Y Y. J. Polym. Res., 2021, 28(1): 1.

doi: 10.1007/s10965-020-02155-9
[73]
Wen J, Jia Z Y, Zhang X P, Pan M W, Yuan J F, Zhu L. Mater. Today Commun., 2020, 25: 101569.
[74]
Wu X X, Li J H, Li G, Ling L, Zhang G P, Sun R, Wong C P. J. Appl. Polym. Sci., 2018, 135(31): 46532.

doi: 10.1002/app.46532
[75]
Zhao L W, Yin Y, Jiang B, Guo Z H, Qu C Y, Huang Y D. J. Colloid Interf. Sci., 2020, 573: 105.

doi: 10.1016/j.jcis.2020.03.125
[76]
Cai Y B, Zou H W, Zhou S T, Chen Y, Liang M. ACS Appl. Polym. Mater., 2020, 2(9): 3977.

doi: 10.1021/acsapm.0c00638
[77]
Zheng P W, McCarthy T J. J. Am. Chem. Soc., 2012, 134(4): 2024.

doi: 10.1021/ja2113257
[78]
Von Szczepanski J, Danner P M, Opris D M. Adv. Sci., 2022, 2202153.
[79]
Li X P, Yu R, Zhao T T, Zhang Y, Yang X, Zhao X J, Huang W. Eur. Polym. J., 2018, 108: 399.

doi: 10.1016/j.eurpolymj.2018.09.021
[80]
Hou Y, Zhu G D, Cui J, Wu N N, Zhao B T, Wu J, Zhao N. J. Am. Chem. Soc., 2022, 144(1): 436.

doi: 10.1021/jacs.1c10455
[81]
Burattini S, Colquhoun H M, Greenland B W,. Hayes W. Faraday Discuss., 2009, 143: 251.

pmid: 20334106
[82]
Fawcett A S, Brook M A. Macromolecules, 2014, 47(5): 1656.

doi: 10.1021/ma402361z
[83]
Lv C, Zhao K, Zheng J P. Macromol. Rapid Commun., 2018, 39(8): 1700686.

doi: 10.1002/marc.201700686
[84]
Lv C, Wang J K, Li Z X, Zhao K F, Zheng J P. Compos. B Eng., 2019, 177: 107270.

doi: 10.1016/j.compositesb.2019.107270
[85]
Zhang Y H, Yuan L, Liang G Z, Gu A J. J. Mater. Chem. A, 2018, 6(46): 23425.

doi: 10.1039/C8TA07580H
[86]
Chen G M, Sun Z Y, Wang Y M, Zheng J Y, Wen S F, Zhang J W, Wang L, Hou J, Lin C G, Yue Z F. Prog. Org. Coat., 2020, 140: 105483.
[87]
Bai L, Zheng J P. Compos. Sci. Technol., 2020, 190: 108062.

doi: 10.1016/j.compscitech.2020.108062
[88]
Bai L, Yan X X, Feng B W, Zheng J P. Compos. B Eng., 2021, 223: 109123.

doi: 10.1016/j.compositesb.2021.109123
[89]
Shan Y X, Liang S, Mao X K, Lu J, Liu L L, Huang Y W, Yang J X. Soft. Matter, 2021, 17(17): 4643.

doi: 10.1039/D0SM02175J
[90]
Yu H T, Feng Y Y, Gao L, Chen C, Zhang Z X, Feng W. Macromolecules, 2020, 53(16): 7161.

doi: 10.1021/acs.macromol.9b02544
[91]
Guo H S, Han Y, Zhao W Q, Yang J, Zhang L. Nat. Commun., 2020, 11(1): 2037.

doi: 10.1038/s41467-020-15949-8
[92]
Shi X R, Zhang K Y, Zhao L W, Jiang B, Huang Y D. Ind. Eng. Chem. Res., 2021, 60: 2154.

doi: 10.1021/acs.iecr.0c05238
[93]
Wang Z, Liu Y T, Zhang D J,. Gao C H, Wu Y M. Compos. B Eng., 2021, 224: 109213.

doi: 10.1016/j.compositesb.2021.109213
[94]
Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H. Polymer, 2017, 120: 189.

doi: 10.1016/j.polymer.2017.05.060
[95]
Xiang H P, Yin J F, Lin G H, Liu X X, Rong M Z, Zhang M Q. Chem. Eng. J., 2019, 358: 878.

doi: 10.1016/j.cej.2018.10.103
[96]
Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A. Chem. Commun., 2010, 46: 1150.

doi: 10.1039/B916128G
[97]
Zhao D L, Liu S S, Wu Y F, Guan T, Sun N, Ren B Y. Prog. Org. Coat., 2019, 133: 289.
[98]
Ye J, Lin G H, Lin Z Q, Deng H Y, Huang J J, Xiang H P, Rong M Z, Zhang M Q. Macromol. Mater. Eng., 2022, 307(6): 2100874.

doi: 10.1002/mame.202100874
[99]
Xiang H P, Rong M Z, Zhang M Q. Polymer, 2017, 108: 339.

doi: 10.1016/j.polymer.2016.12.006
[100]
Huang Y, Yan J, Wang D, Feng S, Zhou C. Polymer, 2021, 13(21): 3729.
[101]
Peng B W, Li H, Li Y T, Lv Z, Wu M, Zhao C X. Chem. Eng. J., 2020, 395: 125079.

doi: 10.1016/j.cej.2020.125079
[102]
Jia X Y, Mei J F, Lai J C, Li C H, You X Z. Chem. Commun., 2015, 51(43): 8928.

doi: 10.1039/C5CC01956G
[103]
Zuo Y J, Gou Z M, Zhang C Q, Feng S Y. Macromol. Rapid Commun., 2016, 37 (13): 1052.

doi: 10.1002/marc.201600155
[104]
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N. Adv. Mater., 2016, 28 (37): 8277.

doi: 10.1002/adma.201602332
[105]
Miwa Y, Taira K, Kurachi J, Udagawa T, Kutsumizu S. Nat. Commun., 2019, 10: 1828.

doi: 10.1038/s41467-019-09826-2
[1] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[2] Xia Yong, Yao Hongtao, Miao Zhihui, Wang Fang, Qi Zhengjian, Sun Yu. Preparation and Application of Silicone Materials Based on Click Chemistry [J]. Progress in Chemistry, 2015, 27(5): 532-538.
[3] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.