中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 692-697 Previous Articles   Next Articles

• Review •

Application of Pesudorotaxanes/Rotaxanes in Drug Carriers

Liu Peng, Shao Xueguang, Cai Wensheng*   

  1. College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
PDF ( 1046 ) Cited
Export

EndNote

Ris

BibTeX

Pesudorotaxanes/rotaxanes are an important class of supramolecules in the field of supramolecular chemistry. They can adjust their conformations under external stimuli, such as redox process, pH change, light, and solvent, and hence have been widely applied in the fabrication of molecular machines. Recently, researchers realized that these special structural features can be utilized to control drug release and enhance the ability of drugs to enter membranes, making these supramolecules promising candidates for drug carriers. In this paper, the progress of the application of pesudorotaxanes/rotaxanes in drug delivery systems over the past decade has been reviewed. In particular, two kinds of drug carriers, viz. pesudorotaxane-based mechanized silica nanoparticles (MSNP) and host-rotaxanes, are emphasized. MSNP was firstly designed and synthesized by Stoddart and Zink et al. Within MSNP, the assembly and de-assembly processes of the attached pesudorotaxanes endow silica nanoparticles with a new function——controlled drug release. The host-rotaxane carriers were fabricated by Smithrud et al. With the aid of shuttling processes in rotaxanes, host-rotaxanes hold a significant ability to penetrate biomembranes, which can be applied to aid transmembrane drug delivery. The advantages and disadvantages of these two kinds of drug carriers are discussed, either. Finally, the further development of pesudorotaxane/rotaxane-based drug carriers is prospected. Contents
1 Introduction
2 Application of pesudorotaxanes/rotaxanes in drug transport
2.1 Pesudorotaxanes as nanovalves in mechanized silica nanoparticles
2.2 Host-rotaxanes as drug carriers
3 Conclusion and outlook

CLC Number: 

[1] Danquah M K, Zhang X A, Mahato R I. Adv. Drug Deliv. Rev., 2011, 63: 623-639
[2] Chen T. Adv. Drug Deliv. Rev., 2010, 62: 1257-1264
[3] Torchilin V P. Adv. Drug Deliv. Rev., 2008, 60: 548-558
[4] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chem. Rev., 1999, 99: 3181-3198
[5] Medina S H, El-Sayed M E H. Chem. Rev., 2009, 109: 3141-3157
[6] Song J, Zhou J, Duan H. J. Am. Chem. Soc., 2012, 134: 13458-13469
[7] Lee J E, Lee N, Kim T, Kim J, Hyeon T. Acc. Chem. Res., 2011, 44: 893-902
[8] Kievit F M, Zhang M. Acc. Chem. Res., 2011, 44: 853-862
[9] Gomes-da-Silva L C, Fonseca N A, Moura V, Pedroso de Lima M C, Simões S, Moreira J N. Acc. Chem. Res., 2012, 45: 1163-1171
[10] Hoyer J, Neundorf I. Acc. Chem. Res., 2012, 45: 1048-1056
[11] Shieh Y A, Yang S J, Wei M F, Shieh M J. ACS Nano, 2010, 4: 1433-1442
[12] Uekama K, Hirayama F, Irie T. Chem. Rev., 1998, 98: 2045-2076
[13] Raymo F M, Stoddart J F. Chem. Rev., 1999, 99: 1643-1664
[14] Fahrenbach A C, Bruns C J, Cao D, Stoddart J F. Acc. Chem. Res., 2012, 45: 1581-1592
[15] Harada A. Acc. Chem. Res., 2001, 34: 456-464
[16] Wenz G, Han B H, M黮ler A. Chem. Rev., 2006, 106: 782-817
[17] Guo X Q, Song L X, Dang Z, Du F Y. Bull. Chem. Soc. Jpn., 2009, 82: 1209-1213
[18] Wang Y H, Zhang H M, Liu L, Liang Z X, Guo Q X, Tung C H, Inoue Y, Liu Y C. J. Org. Chem., 2002, 67: 2429-2434
[19] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974-6023
[20] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36: 621-630
[21] Rowan A E, Elemans J A A W, Nolte R J M. Acc. Chem. Res., 1999, 32: 995-1006
[22] Belowich M E, Valente C, Smaldone R A, Friedman D C, Thiel J, Cronin L, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 5243-5261
[23] Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew. Chem. Int. Ed., 2012. 51: 7011-7015
[24] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res., 2012, 45: 1294-1308
[25] Hu X B, Chen L, Si W, Yu Y, Hou J L. Chem. Commun., 2011, 4694-4696
[26] Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F. J. Am. Chem. Soc., 2012, 134: 8711-8717
[27] Bodis P, Panman M R, Bakker B H, Mateo-Alonso A, Prato M, Buma W J, Brouwer A M, Kay E R, Leigh D A, Woutersen S. Acc. Chem. Res., 2009, 42: 1462-1469
[28] Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley-VCH, 1995. 1-9
[29] Balzani V, G髆ez-L髉ez M, Stoddart J F. Acc. Chem. Res., 1998, 31: 405-414
[30] Kawaguchi Y, Harada A. Org. Lett., 2000, 2: 1353-1356
[31] Ye T, Kumar A S, Saha S, Takami T, Huang T J, Stoddart J F, Weiss P S. ACS Nano, 2010, 4: 3697-3701
[32] Balzani V, Clemente-Le髇 M, Credi A, Ferrer B, Venturi M, Flood A H, Stoddart J F. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 1178-1183
[33] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L c, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291: 2124-2128
[34] Chipot C, Pohorille A. (Eds.) Free Energy Calculations. Theory and Applications in Chemistry and Biology. Berlin: Springer Verlag, 2007
[35] Sprik M, Ciccotti G. J. Chem. Phys., 1998, 109: 7737-7744
[36] Carter E A, Ciccotti G, Hynes J T, Kapral R. Chem. Phys. Lett., 1989, 156: 472-477
[37] Still W C, Tempczyk A, Hawley R C, Hendrickson T. J. Am. Chem. Soc., 1990, 112: 6127-6129
[38] Darve E, Rodriguez-G髆ez D, Pohorille A. J. Chem. Phys., 2008, 128: art. no. 144120
[39] Rodriguez-Gomez D, Darve E, Pohorille A. J. Chem. Phys., 2004, 120: 3563-3578
[40] Chipot C, H閚in J. J. Chem. Phys., 2005, 123: art. no. 244906
[41] H閚in J, Chipot C. J. Chem. Phys., 2004, 121: 2904-2914
[42] Kim H, Goddard W A, Jang S S, Dichtel W R, Heath J R, Stoddart J F. J. Phys. Chem. A, 2009, 113: 2136-2143
[43] Raiteri P, Bussi G, Cucinotta C S, Credi A, Stoddart J F, Parrinello M. Angew. Chem. Int. Ed., 2008, 47: 3536-3539
[44] Zhang Q, Tu Y, Tian H, Zhao Y L, Stoddart J F, Ågren H. J. Phys. Chem. B, 2010, 114: 6561-6566
[45] Liu P, Chipot C, Shao X G, Cai W S. J. Phys. Chem. C, 2012, 116: 4471-4476
[46] Liu P, Cai W S, Chipot C, Shao X G. J. Phys. Chem. Lett., 2010, 1: 1776-1780
[47] Deng W Q, Muller R P, Goddard W A. J. Am. Chem. Soc., 2004, 126: 13562-13563
[48] Dvornikovs V, House B E, Kaetzel M, Dedman J R, Smithrud D B. J. Am. Chem. Soc., 2003, 125: 8290-8301
[49] Carlone A, Goldup S M, Lebrasseur N, Leigh D A, Wilson A. J. Am. Chem. Soc., 2012, 134: 8321-8323
[50] Serreli V, Lee C F, Kay E R, Leigh D A. Nature, 2007, 445: 523-527
[51] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72-191
[52] Zhao Y L, Aprahamian I, Trabolsi A, Erina N, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 6348-6350
[53] Luo Y, Collier C P, Jeppesen J O, Nielsen K A, DeIonno E, Ho G, Perkins J, Tseng H R, Yamamoto T, Stoddart J F, Heath J R. ChemPhysChem, 2002, 3: 519-525
[54] Pease A R, Jeppesen J O, Stoddart J F, Luo Y, Collier C P, Heath J R. Acc. Chem. Res., 2001, 34: 433-444
[55] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126: 3370-3371
[56] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244-10250
[57] Torney F, Trewyn B G, Lin V S Y, Wang K. Nat. Nano., 2007, 2: 295-300
[58] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Acc. Chem. Res. 2007, 40: 846-853
[59] Angelos S, Johansson E, Stoddart J F, Zink J I. Adv. Funct. Mater., 2007, 17: 2261-2271
[60] Yang Y W. MedChemComm, 2011, 2: 1033-1049
[61] Nygaard S, Hansen S W, Huffman J C, Jensen F, Flood A H, Jeppesen J O. J. Am. Chem. Soc, 2007, 129: 7354-7363
[62] Zhu Z, Fahrenbach A C, Li H, Barnes J C, Liu Z, Dyar S M, Zhang H, Lei J, Carmieli R, Sarjeant A A, Stern C L, Wasielewski M R, Stoddart J F. J. Am. Chem. Soc, 2012, 134: 11709-11720
[63] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623-10625
[64] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686-1688
[65] Sun Y L, Yang B J, Zhang S X A, Yang Y W. Chem. Eur. J., 2012, 18: 9212-9216
[66] Marquez C, Nau W M. Angew. Chem. Int. Ed., 2001, 40: 3155-3160
[67] M醨quez C, Hudgins R R, Nau W M. J. Am. Chem. Soc., 2004, 126: 5806-5816
[68] Ling X, Samuel E L, Patchell D L, Masson E. Org. Lett., 2010, 12: 2730-2733
[69] Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 12912-12914
[70] Nguyen T D, Leung K C F, Liong M, Pentecost C D, Stoddart J F, Zink J I. Org. Lett., 2006, 8: 3363-3366
[71] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382-2383
[72] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690-12697
[73] Zhao Y L, Li Z, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016-13025
[74] Vassal G, Koscielny S, Challine D, Valteau-Couanet D, Boland I, Deroussent A, Lemerle J, Gouyette A, Hartmann O. Cancer Chemoth. Pharm., 1995, 37: 247-253
[75] Menuel S, Joly J P, Courcot B, Elys閑 J, Ghermani N E, Marsura A. Tetrahedron, 2007, 63: 1706-1714
[76] Porwanski S, Dumarcay-Charbonnier F, Menuel S, Joly J P, Bulach V, Marsura A. Tetrahedron, 2009, 65: 6196-6203
[77] Zehnder D W, Smithrud D B. Org. Lett., 2001, 3: 2485-2487
[78] Smukste I, House B E, Smithrud D B. J. Org. Chem., 2003, 68: 2559-2571
[79] Wang X, Bao X, McFarland-Mancini M, Isaacsohn I, Drew A F, Smithrud D B. J. Am. Chem. Soc., 2007, 129: 7284-7293
[80] Bao X, Isaacsohn I, Drew A F, Smithrud D B. J. Am. Chem. Soc., 2006, 128: 12229-12238
[81] Wang X, Smithrud D B. Bioorg. Med. Chem. Lett., 2011, 21: 6880-6883
[82] Zhu J, McFarland-Mancini M, Drew A F, Smithrud D B. Bioorg. Med. Chem. Lett., 2009, 19: 520-523

[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[3] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[4] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[5] Zhang Shuangjin, Yang Yang, Sun Xiaoqiang, Yin Fanghua, Jiang Juli, Wang Leyong. Molecular Machines Driven by Acid-Base Chemistry and Their Applications [J]. Progress in Chemistry, 2016, 28(2/3): 244-259.
[6] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[7] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.
[8] Sun Shu, Shi Jianbing, Dong Yuping, Hu Xiaoyu, Wang Leyong. Research Advances of Polypseudorotaxanes [J]. Progress in Chemistry, 2014, 26(08): 1409-1426.
[9] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[10] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.
[11] He Junhui1**, Chen Hongmin1,2,Zhang Lin3. Inorganic Hollow Micro/Nanospheres [J]. Progress in Chemistry, 2007, 19(10): 1488-1494.
[12] Li Xiaoran,Yuan Xiaoyan**. Poly(Ethylene Glycol)-Poly(Lactic Acid) Copolymers for Drug Carriers [J]. Progress in Chemistry, 2007, 19(06): 973-981.
[13] Bo Jing,Xiao Chen**,Yongcun Chai. Assembling Poly(pseudo)rotaxanes from Cyclodextrins and Macromolecules [J]. Progress in Chemistry, 2006, 18(10): 1361-1368.