中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Composite Materials for Uranium Adsorption

Zhang Wen, Ye Gang, Chen Jing*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 1045 ) Cited
Export

EndNote

Ris

BibTeX

Uranium is a very important nuclear fuel resource as well as one of main radioactive elements in the radioactive contamination liquid waste. Adsorption of uranium involves the extraction of uranium from all solutions and the treatment of uranium-contaminated liquid waste and the preconcentration of uranium for chemical analysis. In the present paper, the adsorption behavior of uranium by different composite adsorbents, whose matrixes were chemically modified with organo-functional groups, is reviewed. The applicable aqueous pH, the adsorption capacity and selectivity to uranium are discussed for different functional groups. The organophosphorus functional group-bearing composite material for uranium adsorption is promising because organophosphorus functional group showed the advantages of wide range of pH, higher adsorption capacity and better selectivity. Contents
1 Introduction
2 Matrixes of composite materials
3 Organo-functional group of composite materials
3.1 Only oxygen coordinated to uranyl ion
3.2 Ligands containing nitrogen coordinated
4 Conclusion and prospects

CLC Number: 

[1] 王世虎(Wang S H), 朱欣然(Zhu X R), 袁博(Yuan B). 国土资源情报(Land and Resources Information), 2010, 8: 24-28
[2] 闫强(Yan Q), 王安建(Wang A J), 王高尚(Wang G S), 陈其慎(Chen Q S), 于汶加(Yu W J), 李瑞萍(Li R P). 中国矿业(China Mining Magazine), 2011, (2): 1-5
[3] Schneider P, Neitzel P L, Osenbruck K, Noubacteb C, Merkel B, Hurst S. Acta Hydroch. Hydrob., 2001, 29: 129-138
[4] Carvalho F P, Oliveira J M, Lopes I, Batista A. J. Environ. Radioact., 2007, 98: 298-314
[5] 邓锦勋(Deng J X), 孟健(Meng J), 程威(Cheng W), 李红(Li H), 李建华(Li J H). 铀矿冶(Uranium Mining and Metallurgy), 2011, (2): 100-103
[6] Hussein A E M. J. Radioanal. Nucl. Chem., 2011, 289: 321-329
[7] Bozkurt S, Molu Z, Cavas L, Merdivan M. J. Radioanal. Nucl. Chem., 2011, 288: 867-874
[8] Yamakawa I, Traina S J. Abstracts of Papers of the American Chemical Society, 2001, 222: U493-U493
[9] Carpenter D J, Johnson K O. Waste Management '90: 'Working Towards a Cleaner Environment’. Waste Processing, Transportation, Storage and Disposal, Technical Programs and Public Education. Proceedings of the Symposium, Arizona: Amer Nuclear Society, 1990. 539-546
[10] Uchiyama G, Asakura T, Hotoku S, Mineo H, Kamei K, Watanabe M, Fujine S. J. Radioanal. Nucl. Chem., 2000, 246: 683-688
[11] Zhong X, Wu Y. J. Radioanal. Nucl. Chem., 2012, 292: 355-360
[12] Doyle F M. International Journal of Mineral Processing, 2003, 72: 387-399
[13] Sastre A M, Kumar A, Shukla J P, Singh R K. Separation and Purification Methods, 1998, 27: 213-298
[14] Zhirnov Y P, Zhikharev M A, Savchenko R K. At. Energ., 1996, 81: 529-530
[15] Khalifa M E. Sep. Sci. Technol., 1998, 33: 2123-2141
[16] Aydin F A, Soylak M. Talanta, 2007, 72: 187-192
[17] Hoshi H, Wei Y Z, Kumagai M, Asakura T, Morita Y. J. Alloys Compd., 2004, 374: 451-455
[18] Ansari S A, Pathak P N, Husain M, Prasad A K, Parmar V S, Manchanda V K. Talanta, 2006, 68: 1273-1280
[19] Singh B N, Maiti B. Talanta, 2006, 69: 393-396
[20] Seyhan S, Merdivan M, Demirel N. J. Hazard. Mater., 2008, 152: 79-84
[21] Morsy A M A, Hussein A E M. J. Radioanal. Nucl. Chem., 2011, 288: 341-346
[22] 李兴亮(Li X L), 宋强(Song Q), 刘碧君(Liu B J), 刘春霞(Liu C X), 王航(Wang H), 耿俊霞(Geng J X), 陈震(Chen Z), 刘宁(Liu N), 李首建(Li S J). 化学进展(Progress in Chemistry), 2011, 23(7): 1446-1453
[23] 陈梦君(Chen M J), 崔春龙(Cui C L), 卢喜瑞(Lu X R), 段涛(Duan T), 杨岩凯(Yang Y K), 张东(Zhang D). 原子能科学技术(Atomic Energy Science and Technology), 2011, 1: 14-19
[24] Morss L R. The Chemistry of the Actinide and Transactinide Elements. 3rd ed. Berlin: Springer, 2006.590-591
[25] Pearson R G. J. Am. Chem. Soc., 1963, 85: 3533-3539
[26] Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S. J. Hazard. Mater., 2010, 176: 119-124
[27] Clement O, Rapko B M, Hay B P. Coord. Chem. Rev., 1998, 170: 203-243
[28] Hay B P, Clement O, Sandrone G, Dixon D A. Inorg. Chem., 1998, 37: 5887-5894
[29] Manchanda V K, Pathak P N. Sep. Purif. Technol., 2004, 35: 85-103
[30] Sasaki Y, Tachimori S. Solvent Extr. Ion Exch., 2002, 20: 21-34
[31] Gupta K K, Manchanda V K, Subramanian M S, Singh R K. Solvent Extr. Ion Exch., 2000, 18: 273-292
[32] Thiollet G, Musikas C. Solvent Extr. Ion Exch., 1989, 7: 813-827
[33] Akhila Maheswari M, Subramanian M S. Talanta, 2005, 65: 735-742
[34] Raju C S K, Subramanian M S. Sep. Purif. Technol., 2007, 55: 16-22
[35] Marie-Claire H. J. Chromatogr. A, 1999, 856: 3-54
[36] Condamines N, Musikas C. Solvent Extr. Ion Exch., 1992, 10: 69-100
[37] Prabhakaran D, Subramanian M S. Talanta, 2005, 65: 179-184
[38] Nogami M, Ishihara T, Suzuki K, Ikeda Y. J. Radioanal. Nucl. Chem., 2007, 273: 37-41
[39] 沈朝洪(Shen C H), 包亚之(Bao Y Z), 包伯荣(Bao B R), 王高栋(Wang G D), 钱军(Qian J), 曹正白(Cao Z B). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 1992, (2): 94-100
[40] Pantchev I, Farquet P, Surbeck H, Meyer T. React. Funct. Polym., 2007, 67: 127-135
[41] Butler F E, Hall R M. Anal. Chem., 1970, 42: 1073-1076
[42] Karande A P, Mallik G K, Panakkal J P, Kamath H S, Bhargava V K, Mathur J N. J. Radioanal. Nucl. Chem., 2003, 256: 185-189
[43] Mincher B J, Modolo G, Mezyk S P. Solvent Extr. Ion Exch., 2009, 27: 579-606
[44] Lin Y H, Smart N G, Wai C M. Environ. Sci. Technol., 1995, 29: 2706-2708
[45] Zhu Y J, Jiao R Z. Nucl. Technol., 1994, 108: 361-369
[46] Burger L L. J. Phys. Chem., 1958, 62: 590-593
[47] Naik P W, Dhami P S, Misra S K, Jambunathan U, Mathur J N. J. Radioanal. Nucl. Chem., 2003, 257: 327-332
[48] Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F. Dalton Trans., 2011, 40: 7446-7453
[49] Merdivan M, Buchmeiser M R, Bonn G. Anal. Chim. Acta, 1999, 402: 91-97
[50] Bagnall K W. Gmelin Handbook of Inorganic Chemistry, Uranium, 55-Supplement, vol. E1. Berlin: Springer, 1979. 100-103
[51] Raju C S K, Subramanian M S. J. Hazard. Mater., 2007, 145: 315-322
[52] Prabhakaran D, Subramanian M S. Anal. Bioanal. Chem., 2004, 380: 578-585
[53] Raju C S K, Subramanian M S. Talanta, 2005, 67: 81-89
[54] Prabhakaran D, Subramanian M S. Anal. Bioanal. Chem., 2004, 379: 519-525
[55] Maheswari M A, Subramanian M S. Talanta, 2004, 64: 202-209
[56] Maheswari M A, Subramanian M S. React. Funct. Polym., 2005, 62: 105-114
[57] Dabrowski A, Barczak M, Dudarko O A, Zub Y L. Pol. J. Chem., 2007, 81: 475-483
[58] Dudarko O A, Goncharik V P, Semenii V Y, Zub Y L. Prot. Met., 2008, 44: 193-197
[59] Dudarko O A, Mel'nik I V, Zub Y L, Chuiko A A, Dabrowski A. Colloid J., 2005, 67: 683-687
[60] Dudarko O A, Mel'nyk I V, Zub Y L, Chuiko A A, Dabrowski A. Inorg. Mater., 2006, 42: 360-367
[61] Dudarko O A, Melnyk I V, Zub Y L, Dabrowski A. Characterization of Porous Solids Vii-Proceedings of the 7th International Symposium on the Characterization of Porous Solids, ed. Aix en Provence: Univ Provence, 2006. 479-486
[62] Dudarko O A, Zub Y L, Semenii V Y, Dabrowski A. Colloid J., 2007, 69: 66-74
[63] Mel'nik I V, Stolyarchuk N V, Dudarko O A, Zub Y L, Dabrowski A, Barczak M, Alonso B. Prot. Met. Phys. Chem., 2010, 46: 206-214
[64] Metilda P, Sanghamitra K, Gladis J M, Naidu G R K, Rao T P. Talanta, 2005, 65: 192-200
[65] Anirudhan T S, Divya L, Suchithra P S. J. Environ. Manage., 2009, 90: 549-560
[66] Denizli A, Say R, Garipcan B, Patir S. React. Funct. Polym., 2004, 58: 123-130
[67] Dev K, Pathak R, Rao G N. Talanta, 1999, 48: 579-584
[68] Prabhakaran D, Subramanian M S. Talanta, 2003, 61: 423-430
[69] Xu J D, Raymond K N. Inorg. Chem., 1999, 38: 308-315
[70] Lin Y H, Fiskum S K, Yantasee W, Wu H, Mattigod S V, Vorpagel E, Fryxell G E, Raymond K N, Xu J D. Environ. Sci. Technol., 2005, 39: 1332-1337
[71] Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S. J. Hazard. Mater., 2011, 190: 442-450
[72] Sert , Eral M. J. Nucl. Mater., 2010, 406: 285-292
[73] Tbal H, Morcellet J, Delporte M, Morcellet M. J. Macromol. Sci. Part A, 1992, 29: 699-710
[74] Zhang A, Asakura T, Uchiyama G. React. Funct. Polym., 2003, 57: 67-76
[75] Zhang A, Uchiyama G, Asakura T. React. Funct. Polym., 2005, 63: 143-153
[76] Zhang A, Uchiyama G, Asakura T. Adsorp. Sci. Technol., 2003, 21: 761-773
[77] Kawai T, Saito K, Sugita K, Katakai A, Seko N, Sugo T, Kanno J I, Kawakami T. Ind. Eng. Chem. Res., 2000, 39: 2910-2915
[78] Kavakl P A, Seko N, Tamada M, Güven O. Sep. Sci. Technol., 2005, 39: 1631-1643
[79] Kavakli P, Seko N, Tamada M, Güven O. Adsorption, 2005, 10: 309-315
[80] Piron E, Domard A. Int. J. Biol. Macromol., 1998, 22: 33-40
[81] Park G I, Park H S, Woo S I. Sep. Sci. Technol., 1999, 34: 833-854
[82] Wang G, Liu J, Wang X, Xie Z, Deng N. J. Hazard. Mater., 2009, 168: 1053-1058
[83] 王彩霞(Wang C X), 刘云海(Liu Y H), 庞翠(Pang C). 中国核科学技术进展报告(第一卷)(Progress Peport on China Nuclear Science & Technology(Vol. 1)), 2009, 11: 183-192
[84] Oshita K, Oshima M, Gao Y, Lee K H, Motomizu S. Anal. Chim. Acta, 2003, 480: 239-249
[85] Vnak P, Özdemir D, Vnak T. J. Radioanal. Nucl. Chem., 1993, 176: 55-64
[86] Gladis J M, Rao T P. Anal. Bioanal. Chem., 2002, 373: 867-872
[87] Jain V K, Handa A, Sait S S, Shrivastav P, Agrawal Y K. Anal. Chim. Acta, 2001, 429: 237-246
[88] Matsuda M, Akiyoshi Y. Nippon Kagaku Kaishi, 1991, 336-341
[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[9] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[10] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
Viewed
Full text


Abstract

Composite Materials for Uranium Adsorption