中文
Announcement
More
Progress in Chemistry Previous Articles   

• Review •

Characteristics and Formation Mechanisms of Atmospheric Organosulfates

Ma Ye1, Chen Jianmin1, Wang Lin1,2**   

  1. 1. Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China;
    2. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received: Revised: Online: Published:
PDF ( 1475 ) Cited
Export

EndNote

Ris

BibTeX

Atmospheric organosulfates refer to sulfate esters and their derivatives that have been identified in ambient secondary organic aerosol(SOA) samples. Recent laboratory and field studies show that organosulfates are derived from the reactions of particulate sulfates or sulfuric acid with compounds formed from hydroxyl radical(OH)/nitrate radical(NO3)/ozone(O3)-initiated reactions of isoprene, α-/β-pinene, and other monoterpenes and sesquiterpenes. Organosulfates can also be formed through reactive uptake of carbonyls such as glyoxal by particulate sulfates or sulfuric acid. Enhanced acidity of the sulfate seed particles favors the production of organosulfate. Hydrolysis of organosulfates is slow unless in a highly acidic solution. Offline electrospray ionization mass spectrometry(ESI-MS) and online aerosol mass spectrometry(AMS) are useful methods to detect atmospheric organosulfates. Contents
1 Introduction
2 Identification of atmospheric organosulfates
2.1 Organosulfates observed in the atmosphere
2.2 Temporal profiles of organosulfates
3 Laboratory studies of organosulfates
3.1 Organosulfates derived from isoprene
3.2 Organosulfates derived from α-/β-pinene
3.3 Organosulfates derived from other monoterpenes and sesquiterpenes
3.4 Organosulfates formation via reactive uptake of carbonyls
3.5 Hydrolysis of organosulfates and organonitrates
4 Analytical methods of organosulfates
5 Outlook

CLC Number: 

[1] Andreae M O, Crutzen P J. Science, 1997, 276: 1052-1058
[2] Haywood J, Boucher O. Rev. Geophys., 2000, 38: 513-543
[3] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press: 2007
[4] Tanner R L, Parkhurst W. J. Air Waste Manag. Assoc., 2000, 50: 1299-1307
[5] Dockery D W, Pope C A III, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B G Jr, Speizer F E. N. Engl. J. Med., 1993, 329: 1753-1759
[6] Laden F, Schwartz J, Speizer F E, Dockery D W. Am. J. Respir. Crit. Care Med., 2006, 173: 667-672
[7] Pope III C A, Dockery D W. J. Air Waste Manag. Assoc., 2006, 56: 709-742
[8] Goldstein A H, Galbally I E. Environ. Sci. Technol., 2007, 41: 1514-1521
[9] Ravishankara A R. Science, 1997, 276: 1058-1065
[10] Jang M S, Czoschke N M, Lee S, Kamens R M. Science, 2002, 298: 814-817
[11] Romero F, Oehme M. J. Atmos. Chem., 2005, 52: 283-294
[12] Reemtsma T, These A, Venkatachari P, Xia X Y, Hopke P K, Springer A, Linscheid M. Anal. Chem., 2006, 78: 299-8304
[13] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 2007, 41: 517-527
[14] Surratt J D, Gómez-González Y, Chan A W H, Vermeylen R, Shahgholi M, Kleindienst T E, Edney E O, Offenberg J H, Lewandowski, Jaoui M, Maenhaut W, Claeys M, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2008, 112: 8345-8378
[15] Gómez-González Y, Surratt J D, Cuyckens F, Szmigielski R, Vermeylen R, Jaoui M, Lewandowski M, Offenberg J H, Kleindienst T E, Edney E O, Blockhuys F, Van Alsenoy C, Maenhaut W, Claeys M. J. Mass. Spectrom., 2008, 43: 371-382
[16] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45: 5105-5111
[17] Iinuma Y, Müller C, Berndt T, Bge O, Claeys M, Herrmann H. Environ. Sci. Technol., 2007, 41: 6678-6683
[18] Iinuma Y, Müller C, Bge O, Gnauk T, Herrmann H. Atmos. Environ., 2007, 41: 5571-5583
[19] Chan M N, Surratt J D, Chan A W H, Schilling K, Offenberg J H, Lewandowski M, Edney E O, Kleindienst T E, Jaoui M, Edgerton E S, Tanner R L, Shaw S L, Zheng M, Knipping E M, Seinfeld J H. Atmos. Chem. Phys., 2011, 11: 1735-1751
[20] Liggio J, Li S M, Mclaren R. Environ. Sci. Technol., 2005, 39: 1532-1541
[21] Liggio J, Li S M. J. Geophys. Res., 2006, 111: art. no. D24303
[22] Liggio J, Li S M. Geophys. Res. Lett., 2006, 33: art. no. L13808
[23] Perri M J, Lim Y B, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44: 2658-2664
[24] Olson C N, Galloway M M, Yu G, Hedman C J, Lockett M R, Yoon T, Stone E A, Smith L M, Keutsch F N. Environ. Sci. Technol., 2011, 45: 6468-6474
[25] Hawkins L N, Russell L M, Covert D S, Quinn P K, Bates T S. J. Geophys. Res., 2010, 115: art. no. D13201
[26] Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi X G, Farhat Y, Surratt J D, Gómez-González Y, Sciare J, Maenhaut W. J. Aerosol. Sci., 2010, 41: 13-22
[27] Altieri K E, Turpin B J, Seitzinger S P. Atmos. Chem. Phys., 2009, 9: 2533-2542
[28] Mazzoleni L R. Ehrmann B M. Shen X H. Marshall A G. Collett J L. Environ. Sci. Technol., 2010, 44: 3690-3697
[29] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45: 8648-8655
[30] Minerath E C, Elrod M J. Environ. Sci. Technol., 2009, 43: 1386-1392
[31] Minerath E C, Schultz M P, Elrod M J. Environ. Sci. Technol., 2009, 43: 8133-8139
[32] Wang X F, Gao S, Yang X, Chen H, Chen J M, Zhuang G S, Surratt J D, Chan M N, Seinfeld J H. Environ. Sci. Technol., 2010, 44: 4441-4446
[33] Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P I, Geron C. Atmos. Chem. Phys., 2006, 6: 3181-3210
[34] Hallquist M, Wenger J C, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N M, George C, Goldstein A H, Hamilton J F, Herrmann H, Hoffmann T, Iinuma Y, Jang M., Jenkin M E, Jimenez J L, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel Th F, Monod A, Prevot A S H, Seinfeld J H, Surratt J D, Szmigielski R, Wildt J. Atmos. Chem. Phys., 2009, 9: 5155-5236
[35] Carlton A G, Wiedinmyer C, Kroll J H. Atmos. Chem. Phys., 2009, 9: 4987-5005
[36] Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae M O, Artaxo P. Science, 2004, 303: 1173-1176
[37] Paulot F, Crounse J D, Kjaergaard H G, Kürten A, St Clair J M, Seinfeld J H, Wennberg P O. Science, 2009, 325: 730-733
[38] Surratt J D, Chan A W H, Eddingsaas N C, Chan M N, Loza C L, Kwan A J, Hersey S P, Flagan R C, Wennberg P O, Seinfeld J H. Proc. Natl. Acad. Sci. USA, 2010, 107: 6640-6645
[39] Lin Y H, Zhang Z, Docherty K S, Zhang H F, Budisulistiorini S H, Rubitschun C L, Shaw S, Knipping Eladio, Edgerton E S, Kleindienst T E, Gold A, Surratt J D. Environ. Sci. Technol., 2012, 46(1): 250-258
[40] Ng N L, Kwan A J, Surratt J D, Chan A W H, Chhabra P S, Sorooshian A, Pye H O T, Crounse J D, Wennberg P O, Flagan R C, Seinfeld J H. Atmos. Chem. Phys., 2008, 8: 4117-4140
[41] Nozière B, Ekstrm S, Alsberg T, Holmstrm S. Geophys. Res. Lett., 2010, 37: art. no. L05806
[42] Jaoui M, Corse E, Kleindienst T E, Offenberg J H, Lewandowski M, Edney E O. Environ. Sci. Technol., 2006, 40: 3819-3828
[43] Lal V, Khalizov A F, Lin Y, Galvan M D, Connell B T, Zhang R Y. J. Phys. Chem. A., 2012, 116(24): 6078-6090
[44] Iinuma Y, Bge O, Kahnt A, Herrmann H. Phys. Chem. Chem. Phys., 2009, 11: 7985-7997
[45] Jang M, Kamens R M. Environ. Sci. Technol., 2001, 35: 3626-3639
[46] Arey J, Obermeyer G, Aschmantn S M, Chattopadhyay S, Cusick R D, Atkinson R. Environ. Sci. Technol., 2009, 43: 683-689
[47] Stevens P S, Seymour E, Li Z. J. Phys. Chem. A., 2000, 104: 5989-5997
[48] Fick J, Pommer L, Nilsson C, Andersson B. Atmos. Environ., 2003, 37: 4087-4096
[49] Hu K S, Darer A I, Elrod M J. Atmos. Chem. Phys., 2011, 11: 8307-8320
[50] Adam I D, Neil C C, Alison E O, Matthew J E. Environ. Sci. Technol., 2011, 11: 1895-1902
[51] Farmer D K, Matsunaga A, Docherty K S, Surratt J D, Seinfeld J H, Ziemann P J, Jimenez J L. Proc. Natl. Acad. Sci. USA, 2010, 107: 6670-6675
[52] Docherty K S, Aiken A C, Huffman J A, Ulbrich I M, DeCarlo P F, Sueper D, Worsnop D R, Snyder D C, Peltier R E, Weber R J, Grover B D, Eatough D J, Williams B J, Goldstein A H, Ziemann P J, Jimenez J L. Atmos. Chem. Phys., 2011, 11: 12387-12420
[53] Froyd K D, Murphy S M, Murphy D M, de Gouw J A, Eddingsaas N C, Wennberg P O. Proc. Natl. Acad. Sci. USA, 2010, 107: 21360-21365
[54] Ehn M, Junninen H, Petaja T, Kurten T, Kerminen V M, Schobesberger S, Manninen H E, Ortega I K, Vehkamaki H, Kulmala M, Worsnop D R. Atmos. Chem. Phys., 2010, 10: 8513-8530
[55] Wang L, Khalizov A F, Zheng J, Xu W, Ma Y, Lal V, Zhang R Y. Nat. Geosci., 2010, 3: 238-242
[1] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[2] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[3] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[4] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[5] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[6] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[7] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[8] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[9] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[10] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[11] Fang Qile, Chen Baoliang*. Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate [J]. Progress in Chemistry, 2012, (10): 2040-2053.
[12] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Lei Jinhua Wang Honghua Li Dongliang Zhou Guangyuan. Development of Two-Staged Seeded Swelling Polymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.