中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

DNA Biosensors Based on Functional Nanoprobes

Dong Haifeng, Zhang Xueji   

  1. Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, China
  • Received: Revised: Online: Published:
PDF ( 1121 ) Cited
Export

EndNote

Ris

BibTeX

The accomplishment of the Human Genome Project and the progress in research of the functional genomics make gene diagnoses a hot spot in the areas of molecular biology and biomedicine. DNA biosensors, based on the bases pairing, can continuously, fast, sensitively detect the specific gene sequence, which have developed quickly in recent years. Nanoparticles are intensely studied in bioanalysis, owing to its unique physical and chemical properties, excellent biocompatibility, stable mechanical and facilitated modification properties. Various compositions, sizes, dimensions and shapes of nanomaterials such as quantum dot, noble metal nanoparticles, carbon nanomaterials are controllably tailored to couple different biomolecules in order to develop nanoprobes with desired properties for DNA biosensing. These biosensing devices can be employed for detection of DNA sequence with high sensitivity and selectivity. Contents
1 Introduction
2 The basic principle of DNA biosensors
3 General categories of DNA biosensors
4 The application of nanoparticles in DNA biosensors
4.1 Functional gold nanoprobe
4.2 Functional carbon nanoprobe
4.3 Functional semiconductor nanoprobe
5 Conclusion and outlook

CLC Number: 

[1] Huang J, Wu Y R, Chen Y, Zhu Z, Yang X H, Yang C Y J, Wang K M, Tan W H. Angew. Chem. Int. Ed., 2011, 50: 401-404
[2] Bi S, J. Zhang L, Zhang S S. Chem. Commun., 2010, 46: 5509-5511
[3] Cai S, Lau C W, Lu J Z. Anal. Chem., 2010, 82: 7178-7184
[4] Chai Y, Tian D Y, Wang W, Cui H. Chem. Commun., 2010, 46: 7560-7562
[5] 黄强(Huang Q), 刘红英(Liu H Y), 方宾(Fang B). 化学进展(Progress in Chemistry), 2009, 21: 1052-1059
[6] 闫继明(Yan J M), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z). 科学通报(Chinese Science Bulletin), 2010, 55: 1206-1213
[7] Zhang Y Y, Tang Z W, Wang J, Wu H, Maham A H, Lin Y H. Anal. Chem., 2010, 82: 6440-6446
[8] Driskell J D, Tripp R A. Chem. Commun., 2010, 46: 3298-3300
[9] 漆红兰(Ji H L), 张成孝. (Zhang C X). 化学进展(Progress in Chemistry), 2005, 17: 911-915
[10] Zhang G J, Luo Z H H, Huang M J, Tay G K I, Lim E A. Biosens. Bioelectron., 2010, 25: 2447-2453
[11] De M, Ghosh P S, Rotello V M. Adv. Mater., 2008, 20: 4225-4241
[12] 孙伟(Sun W), 焦奎(Jiao K), 王振永(Wang Z Y), 陆路德(Lu L D), 理化检验 ·化学分册(Physical Testing and Chemical Analysis Part B: chemical Analysis), 2004, 40: 742-745
[13] Sassolas A, Leca-Bouvier B D, Blum L J. Chem. Rev., 2008: 108, 109-139
[14] Bailey V J, Easwaran H, Zhang Y, Griffiths E, Belinsky S A, Herman J G, Baylin S B, Carraway H E, Wang T H. Genome Res., 2009, 19: 1455-1461
[15] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43, 631-641
[16] Gooding J J. Electroanalysis, 2002, 14: 1149-1156
[17] Bakker E, Telting-Diaz M. Anal. Chem., 2002, 74: 2781-2800
[18] 唐婷(Tang T), 彭图治(Peng T Z), 时巧翠(Shi Q C). 化学学报(Journal of the Chinese Chemical Society)2005, 63: 2042-2046
[19] 张炯(Zhang J), 万莹(Wan Y), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H). 化学进展 (Progress in Chemistry), 2007, 19: 1576-1584
[20] Epstein J R, Leung A P K, Lee K H, Walt D R. Biosens. Bioelectron., 2003, 18: 541-546
[21] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277: 1078-1081
[22] Cao Y C, Jin R, Mirkin C A. Science, 2002, 297: 1536-1540
[23] Taton T A, Mirkin C A, Lets inger R L. Science, 2000, 289: 1757-1760
[24] Thaxton C S, Mirkin C A. Nature, 2005, 23: 681-682
[25] Dufva M. Biomol. Eng., 2005, 22: 173-184
[26] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C, Gimzewski J K. Science, 2000, 288: 316-318
[27] Song S P, Qin Y, He Y, Huang Q, Fan C H, Chen H Y. Chem. Soc. Rev., 2010, 39: 4234-4243
[28] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607-609
[29] Nam J M, Stoeva S I, Mirkin, C A. J. Am. Chem. Soc., 2004, 126: 5932-5933
[30] Li J, Song S P, Liu X F, Wang L H, Pan D, Huang Q, Zhao Y, Fan C. Adv. Mater., 2008, 20: 497-500
[31] Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48: 8670-8674
[32] Cao Y W C, Jin R C, Mirkin C A. Science, 2002, 297: 1536-1540
[33] Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Analyst, 2010, 135: 1084-1089
[34] Taton T A, Mirkin C A, Letsinger R L. Science, 2000, 289: 1757-1760
[35] Ji H X, Dong H F, Yan F, Lei J P, Ding L, Gao W C, Ju H X. Chem. Eur. J., 2011, 17: 11344-11349
[36] Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C., J. Am. Chem. Soc., 2006, 128: 8575-8580
[37] Gao W C, Dong H F, Gao W C, Lei J P, Ji H X, Ju H X. Chem. Commun., 2011, 47: 5220-5222
[38] Pinijsuwan S, Rijiravanich P, Somasundrum M, Surareungchai W. Anal. Chem., 2008, 80: 6779-6784
[39] Li L., Wang S, Yang T, Huang S M, Wang J C. Biosens. Bioelectron., 2011, 33: 279-283
[40] Roy S, Gao Z. Q. Nano Today, 2011, 4: 318-334
[41] Claussen J C, Franklin A D, ul Haque A, Porterfield D M, Fisher T S. ACS Nano, 2011, 3: 37-44
[42] Li H L, Tian J Q, Wang L, Zhang Y W, Sun X P. J. Mater. Chem., 2011, 21: 824-828.
[43] Wang J, Liu G, Jan M R. J. Am. Chem. Soc., 2004, 126: 3010-3011
[44] Munge B, Liu G, Collins G, Wang J. Anal. Chem., 2005, 77: 4662-4666
[45] Star A, Tu E, Niemann J, Gabriel J C, Joiner C S, Valcke C. Proc. Natl. Acad. Sci. USA, 2006, 103: 921-926
[46] Mohanty N, Berry V. Nano Lett., 2008, 8: 4469-4476
[47] Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan, W. J. Am. Chem. Soc., 2008, 130: 8351-8358
[48] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20: 453-459
[49] Dong H F, Gao W C, Yan F, Ji H X, Ju H X. Anal. Chem., 2010, 82: 5511-5517
[50] Gill R, Zayats M, Willne I. Angew. Chem. Int. Ed., 2008, 47: 7602-7625.
[51] Zhang C Y, Yeh H C, Kuroki M T, Wang T H. Nat. Mater., 2005, 4: 826-831
[52] Han M, Gao X, Su J Z, Nie S. Nat. Biotechnol., 2001, 19: 631-635
[53] Willner I, Patolsky F, Wasserman J. Angew. Chem. Int. Ed., 2001, 40: 1861-1864
[54] Dong H F, Yan F, Ji H X, Wong D K Y, Ju H X. Adv. Funct. Mater., 2010, 20: 1173-1179
[55] Wang J, Liu G, Merkoci A. J. Am. Chem. Soc., 2003, 125: 3214-3215
[56] Arora K., Prabhakar N, Chand S, Malhotra B D. Biosen. Bioelectron., 2007, 23: 613-620
[57] Li M Z, He F, Liao Q, Liu J, Xu L, Jiang L, Song Y L, Wang S, Zhu D B. Angew. Chem. Int. Ed., 2008, 47: 7258 -7262
[58] Mitchel N. Howorka S, Angew. Chem. Int. Ed. 2008, 47: 5565 -5568
[59] Kavanagh P, Leech D. Anal. Chem., 2006, 78: 2710-2716
[60] Zheng W M, He L. J. Am. Chem. Soc., 2009, 131, 3432-3433
[1] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[2] Zhu Chunlei, Yang Qiong, Liu Libing, Wang Shu. Conjugated Polymers for Sensitive Chemical Sensors [J]. Progress in Chemistry, 2011, 23(10): 1993-2002.
[3] Hu Juan, Zhang Chunyang. Surface-Enhanced Raman Scattering Technology and Its Application to Gene Analysis [J]. Progress in Chemistry, 2010, 22(08): 1641-1647.
[4] He Fang Wang Shu. Water-Soluble Conjugated Polymers for Protein Detections [J]. Progress in Chemistry, 2009, 21(11): 2372-2378.
[5] Huang Qiang Liu Hongying Fang Bin. Development of Electrochemical DNA Biosensors [J]. Progress in Chemistry, 2009, 21(05): 1052-1059.