中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Ion Sensor Based on Fluorous Liquid Phase Sensing Membrane with High Selectivity

Huang Meirong1, Ding Yongbo1, Shi Fengying2, Li Xingui1*   

  1. 1. Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, College of Materials Science and Engineering, Tongji University, Shanghai 20009;
    2. Architectural Engineering College, Shanghai Normal University,Shanghai, 201418, China
  • Received: Revised: Online: Published:
PDF ( 713 ) Cited
Export

EndNote

Ris

BibTeX

New fluorous liquid sensing membranes for the fabrication of potentiometric sensors are systematically summarized based on the latest literatures. Fluorous solvents, fluorophilic ion-exchangers and fluorophilic ionophores doped in the fluorous solvents, as well as inert fluorous porous supports, are reviewed thoroughly. The influence of the four factors on the performance of potentiometric sensors is concentrated. It is pointed out that both the fluorophilic ion-exchangers and ionophores used so far contain 2—8 perfluoroalkyl chains which are composed of 6—10 carbon atoms in each chain. Such a fluorous liquid phase sensing membrane possesses a superior lower detection limit compared with conventional poly(vinyl chloride)(PVC) membranes. For Ag(Ⅰ) potentiometric sensor based on the fluorous liquid membrane with solid contact through three-dimensionally ordered macroporous (3DOM) carbon, the lower detection limit can achieve 3.8×10-11 mol/L. Moreover, the potentiometric sensors based on the fluorous membranes demonstrate excellent selectivity. Logarithmic selectivity coefficient log Ki,Jpot of a blank fluorous membrane without ionophore spans a remarkably wide range of more than 16—18 orders of magnitude, which is 8 orders of magnitude wider than that of conventional PVC membrane without ionophore. The unique new potentiometric sensors based on fluorous liquid phase sensing membranes could play an important role in many areas such as environmental monitoring, food safety, especially in medical diagnosis and detection for biomaterials. Contents
1 Introduction
2 Fluorous liquid phase sensing membrane
2.1 Fluorous solvent
2.2 Fluorophilic ion-exchanger
2.3 Fluorophilic ionophore
3 Inert fluorous porous support membrane
4 Performance of fluorous membrane
4.1 Low detection limit
4.2 High selectivity
4.3 Strong ability of anti-contamination
5 Outlook

CLC Number: 

[1] 朱春雷(Zhu C L), 杨琼(Yang Q), 刘礼兵(Liu L B), 王树(Wang S). 化学进展(Prog. Chem.), 2011, 23(10): 1993-2002
[2] 苗丽坤(Miao L K), 刘兴奋(Liu X F), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog. Chem.), 2010, 22(12): 2338-2352
[3] 黄池宝(Huang C B), 易道生(Yi D S), 冯承浩(Feng C H), 任安详(Ren A X), 孙世国(Sun S G). 化学进展(Prog. Chem.), 2010, 22(12): 2408-2419
[4] Phillips F, Kaczor K, Gandhi N, Pendley B D, Danish R K, Neuman M R, Toth B, Horvath V, Lindner E. Talanta, 2007, 74(2): 255-264
[5] Pawowski P, Kisiel A, Michalska A, Maksymiuk K. Talanta, 2011, 84(3): 814-819
[6] Rezaei B, Meghdadi S, Zarandi R F. J. Hazard. Mater., 2008, 153(1/2): 179-186
[7] Morakot N, Ngeontae W, Aeungmaitrepirom W, Tuntulani T. Bull. Korean Chem. Soc., 2008, 29(1): 221-224
[8] Huang M R, Ma X L, Li X G. Talanta, 2009, 78(2): 498-505
[9] Huang M R, Rao X W, Li X G, Ding Y B. Talanta, 2011, 85(3): 1575-1584
[10] Li X G, Feng H, Huang M R, Gu G L, Moloney M G. Anal. Chem., 2012, 84(1): 134-140
[11] Ghanei-Motlagh M, Taher M A, Saheb V, Fayazi M, Sheikhshoaie I. Electrochimica Acta, 2011, 56(15): 5376-5385
[12] Kopylovich M N, Mahmudov K T, Pombeiro A J L. J. Hazard. Mater., 2011, 186(2/3): 1154-1162
[13] Yu S Y, Li F H, Qin Q. Sensors and Actuators B, 2011, 155(2): 919-922
[14] 赵立晶(Zhao L J), 赵萍(Zhao P), 魏月仙(Wei Y X). 分析化学(Chinese J. Anal. Chem.), 2011, 39(10): 1526-1530
[15] Arvand M, Asadollahzadeh S A. Talanta, 2008, 75(4): 1046-1054
[16] Evtugyn G A, Shamagsumova R V, Stoikova E E, Sitdikov R R, Stoikov I I, Budnikov H C, Ivanov A N, Antipin I S. Electroanalysis, 2011, 23(5): 1081-1088
[17] Gao R, van Leeuwen H P, van Valenberg H J F, van Boekel M A J S. Food Chemistry, 2011, 129(2): 619-623
[18] Coldur F, Andac M, Isildak I, Saka T. J. Electroanaly. Chem., 2009, 626(1/2): 30-35
[19] Coldur F, Andac M, Isildak I. J. Solid State Electrochem., 2010, 14(12): 2241-2249
[20] Ion A C, Ion I, Stefan D N, Barbu L. Mat. Sci. Eng. B-Solid, 2009, 29(1): 1-4
[21] Abu Shawish H M, Saadeh S M, Al-Dalou A R, Abu Ghalwa N, Abou Assi A. A. Mat. Sci. Eng. B-Solid, 2011, 31(2): 300-306
[22] Hussiena E M, Abdel-Gawada F M, Issa Y M. Biochem. Eng. J., 2011, 53(2): 210-215
[23] Ding J W, Qin W. J. Am. Chem. Soc., 2009, 131(41): 14640-14641
[24] Liang R N, Song D A, Zhang R M, Qin W. Angew. Chem. Int. Ed., 2010, 49(14): 2556-2559
[25] Mimendia A, Legin A, Merkoci A, del Vallea M. Sensors and Actuators B, 2010, 146: 420-426
[26] Lim C, Slack S, Ufer S, Lindner E. Pure Appl. Chem., 2004, 76(4): 753-764
[27] Robbins M E, Schoenfisch M H. J. Am. Chem. Soc., 2003, 125(20): 6068-6069
[28] Kamlet M J, Abboud J L, Taft R W. J. Am. Chem. Soc., 1977, 99(18): 6027-6038
[29] Brady J E, Carr P W. Anal. Chem., 1982, 54(11): 1751-1757
[30] Boswell P G, Bühlmann P. J. Am. Chem. Soc., 2005, 127(25): 8958-8959
[31] Boswell P G, Lugert E C, Rábai J, Amin E A, Bühlmann P. J. Am. Chem. Soc., 2005, 127(48): 16976-16984
[32] Lai C Z, Koseoglu S S, Lugert E C, Boswell P G, Rábai J, Lodge T P, Bühlmann P. J. Am. Chem. Soc., 2009, 131(4): 1598-1606
[33] Lai C Z, Fierke M A, Correa da Costa R, Gladysz J A, Stein A, Bühlmann P. Anal. Chem., 2010, 82(18): 7634-7640
[34] Boswell P G, Szijjarto C, Jurisch M, Gladysz J A, Rábai J, Bühlmann P. Anal. Chem., 2008, 80(6): 2084-2090
[35] van den Broeke J, Deelman B J, van Koten G. Tetrahedron Letters, 2001, 42 (45): 8085-8087
[36] Chen L D, Mandal D, Pozzi G, Gladysz J A, Bühlmann P. J. Am. Chem. Soc., 2011, 133(51): 20869-20877
[37] Miyake M, Chen L D, Pozzi G, Bühlmann P. Anal. Chem., 2012, 84(2): 1104-1111
[38] Ganjali M R, Norouzi P, Faridbod F, Rezapour M, Pourjavid M. R. J. Iran. Chem. Soc., 2007, 4(1): 1-29
[39] Huang M R, Ma X L, Li X G. Chin. Sci. Bull., 2008, 53(1): 3255-3266
[40] Huang M R, Rao X W, Li X G. Chin. J. Anal. Chem., 2008, 36(12): 1735-1741
[41] Huang M R, Gu G L, Shi F Y, Li X G. Chin. J. Anal. Chem., 2012, 40(1): 50-58
[42] Pozzi G, Quici S, Fish R. Adv. Synth. Catal., 2008, 350(14/15): 2425-2436
[43] Zhang H, Hussam A, Weber S G. J. Am. Chem. Soc., 2010, 132(50): 17867-17879
[44] Barsoum B N, Khella S K, Elwaby A H M, Abbas A A, Ibrahim Y A. Talanta, 1998, 47(5): 1215-1222
[45] Wygladacz K, Radu A, Xu C, Qin Y. Bakker E. Anal. Chem., 2005, 77(15): 4706-4712
[46] Behringer C, Lehmann B, Haug J P, Seiler K, Morf W E, Hartman K, Simon W. Anal. Chim. Acta, 1990, 233: 41-47
[47] Upreti P, Metzger L E, Bühlmann P. Talanta, 2004, 63(1): 139-148
[48] Lyczewska M, Kakietek M, Maksymiuk K, Mieczkowski J, Michalska A. Sensors and Actuators B, 2010, 146(1): 283-288
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[4] Kaili Gu, Haozhen Li, Jinhua Zhang, Jinxiang Li. Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron [J]. Progress in Chemistry, 2021, 33(10): 1812-1822.
[5] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[6] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.
[7] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[8] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[9] Fengyang Zhao, Yongjian Jiang, Tao Liu, Chunchun Ye. Nanofiltration Membrane Based on Novel Materials [J]. Progress in Chemistry, 2018, 30(7): 1013-1027.
[10] Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan. π Complexation Adsorbents Based on Porous Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(6): 628-636.
[11] Xingpeng Chen, Jiaxi Xu*. Regioselective Ring-Opening Reactions of Unsymmetric Azetidines [J]. Progress in Chemistry, 2017, 29(2/3): 181-197.
[12] He Qiao, Yin Zhongqiong, Chen Huabao, Zhang Zumin, Wang Xianxiang, Yue Guizhou. Catalytic Asymmetric Syntheses of Indenes and Their Derivatives [J]. Progress in Chemistry, 2016, 28(6): 801-813.
[13] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[14] Yin Lina, Wang Bin, Ma Ruixue, Yuan Honglin, Yu Gang. Enantioselective Environmental Behavior and Effect of Chiral PPCPs [J]. Progress in Chemistry, 2016, 28(5): 744-753.
[15] Li Siqi, Xu Jiaxi*. Selective Ring-Opening reactions of Unsymmetric Oxetanes [J]. Progress in Chemistry, 2016, 28(12): 1798-1810.