中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synthesis and Applications of Stimulus-Responsive Functional Polymers

You Shusen, Yang Wantai, Yin Meizhen   

  1. State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fibers and Functional Polymers of Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
  • Received: Revised: Online: Published:
PDF ( 1523 ) Cited
Export

EndNote

Ris

BibTeX

Stimulus-responsive, or ‘smart’, polymers belong to the classes of functional polymers. There is a wide-range application of stimulus-responsive polymers in numerous areas such as drug controlled releasing, gene vectors, nanoparticles, nano-reactors, and it shows broad prospects. Therefore the smart polymers have attracted more and more interests during the last decade. Most of the stimulus-responsive polymers are amphiphilic polymers which are able to self-assemble to form series patterns of aggregates such as micelles and vesicles. When the aggregates are subjected to some external environmental stimuli it will produce the corresponding specific response. In particular the functional block responses specifically and as a result the structure phase transition and volume phase transition of the whole functional polymer will emerge. Stimulus-responsive polymers can be classified into several categories, depending upon the type of the external stimulus. Herein, we review some of the most interesting examples of recent advances and progressive application of the responsive polymers based on different stimuli, such as pH, temperature, light, molecular, electro-stimuli and chirality responsive polymers. The article summarizes the structural characteristics and synthetic methods. The mechanism of their functions and the relationship between the structure and properties are briefly discussed. The potential applications and the long-term prospect of these fields are introduced. Contents
1 Introduction
2 pH responsive polymers
3 Temperature responsive polymers
4 Light responsive polymers
5 Molecular responsive polymers
5.1 Solvent polarity responsive polymers
5.2 Glucose responsive polymers
5.3 Enzyme responsive polymers
6 Other responsive polymers
6.1 Electrostimuli-responsive polymers
6.2 Chirality responsive polymers
7 Conclusion and outlook

CLC Number: 

[1] Patten T E, Matyjaszewski K. Accounts of Chemical Research, 1999, 32: 895-903
[2] Wang J S, Matyjaszewski K. Journal of the American Chemical Society, 1995, 117: 5614-5615
[3] Matyjaszewski K, Xia J. Chemical Reviews, 2001, 101: 2921-2990
[4] Ouchi M, Terashima T, Sawamoto M. Chemical Reviews, 2009, 109: 4963-5050
[5] Tsarevsky N V, Matyjaszewski K. Chemical Reviews, 2007, 107: 2270-2299
[6] Yin M, Habicher W D, Voit B. Polymer, 2005, 46: 3215-3222
[7] Smith A E, Xu X, McCormick C L. Progress in Polymer Science, 2010, 35: 45-93
[8] Sugihara S, Blanazs A, Armes S P, Ryan A J, Lewis A L. Journal of the American Chemical Society, 2011, 133: 15707-15713
[9] Hu J, Dai L, Liu S. Macromolecules, 2011, 44: 4699-4710
[10] Chécot F, Lecommandoux S, Gnanou Y, Klok H A. Angewandte Chemie International Edition, 2002, 41: 1339-1343
[11] Bae Y, Fukushima S, Harada A, Kataoka K. Angewandte Chemie International Edition, 2003, 42: 4640-4643
[12] Chiu H C, Lin Y W, Huang Y F, Chuang C K, Chern C S. Angewandte Chemie International Edition, 2008, 47: 1875-1878
[13] Gillies E R, Goodwin A P, Fréchet J M J. Bioconjugate chemistry, 2004, 15: 1254-1263
[14] Gillies E R, Fréchet J M J. Bioconjugate Chemistry, 2005, 16: 361-368
[15] Asayama S, Sekine T, Kawakami H, Nagaoka S. Bioconjugate Chemistry, 2007, 18: 1662-1667
[16] Yang X, Grailer J J, Pilla S, Steeber D A, Gong S. Bioconjugate Chemistry, 2010, 21: 496-504
[17] Jones M C, Ranger M, Leroux J C. Bioconjugate Chemistry, 2003, 14: 774-781
[18] Yu Y, Yin M, Müllen K, Knoll W. Journal of Materials Chemistry, 2012, in press
[19] Pietsch C, Hoogenboom R, Schubert U S. Angewandte Chemie, 2009, 121: 5763-5766
[20] Aathimanikandan S V, Savariar E N, Thayumanavan S. J. Am. Chem. Soc., 2005, 127: 14922-14929
[21] Sundararaman A, Stephan T, Grubbs R B. Journal of the American Chemical Society, 2008, 130: 12264-12265
[22] Zhang Y, Zhu W, Wang B, Yu L, Ding J. Journal of Pharmaceutical Sciences, 2005, 94: 1676-1684
[23] Maeda Y, Taniguchi N, Ikeda I. Macromolecular Rapid Communications, 2001, 22: 1390-1393
[24] Feng Z, Lin L, Yan Z, Yu Y. Macromolecular Rapid Communications, 2010, 31: 640-644
[25] He J, Tong X, Tremblay L, Zhao Y. Macromolecules, 2009, 42: 7267-7270
[26] Weber C, Remzi Becer C, Guenther W, Hoogenboom R, Schubert U S. Macromolecules, 2009, 43: 160-167
[27] Lu X, Zhang L, Meng L, Liu Y. Polymer Bulletin, 2007, 59: 195-206
[28] Liu X, Jiang M. Angewandte Chemie, 2006, 118: 3930-3934
[29] Mynar J L, Goodwin A P, Cohen J A, Ma Y, Fleming G R, Fréchet J M J. Chem. Commun., 2007, 2081-2082
[30] Kuckling D. Colloid & Polymer Science, 2009, 287: 881-891
[31] Jiang J, Tong X, Zhao Y. Journal of the American Chemical Society, 2005, 127: 8290-8291
[32] Goodwin A P, Mynar J L, Ma Y, Fleming G R, Fréchet J M J. Journal of the American Chemical Society, 2005, 127: 9952-9953
[33] Montgomery N A, Denis J C, Schumacher S, Ruseckas A, Skabara P J, Kanibolotsky A, Paterson M J, Galbraith I, Turnbull G A, Samuel I D W. The Journal of Physical Chemistry A, 2011, 115: 2913-2919
[34] Ventura C, Byrne R, Audouin F, Heise A. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49: 3455-3463
[35] Vo C D, Rosselgong J, Armes S P, Tirelli N. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 2032-2043
[36] Feng C L, Yin M, Zhang D, Zhu S, Caminade A M, Majoral J P, Müllen K. Macromolecular Rapid Communications, 2011, 32: 679-683
[37] Yin M, Feng C, Shen J, Yu Y, Xu Z, Yang W, Knoll W, Müllen K. Small, 2011, 7: 1629-1634
[38] Amao Y. Microchimica Acta, 2003, 143: 1-12
[39] Gassensmith J J, Furukawa H, Smaldone R A, Forgan R S, Botros Y Y, Yaghi O M, Stoddart J F. Journal of the American Chemical Society, 2011, 133: 15312-15315
[40] De Geest B G, Jonas A M, Demeester J, De Smedt S C. Langmuir, 2006, 22: 5070-5074
[41] Jablecki M, Gough D A. Analytical Chemistry, 2000, 72: 1853-1859
[42] Podual K, Doyle III F, Peppas N A. Industrial & Engineering Chemistry research, 2004, 43: 7500-7512
[43] Ge X, Tolosa L, Rao G. Analytical Chemistry, 2004, 76: 1403-1410
[44] Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Biomacromolecules, 2009, 10: 1212-1216
[45] Dhanarajan A P, Misra G P, Siegel R A. The Journal of Physical Chemistry A, 2002, 106: 8835-8838
[46] Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2006, 7: 3196-3201
[47] Wang X S, Jackson R, Armes S. Macromolecules, 2000, 33: 255-257
[48] Porto L C, Aissou K, Giacomelli C, Baron T, Rochas C, Pignot-Paintrand I, Armes S P, Lewis A L, Soldi V, Borsali R. Macromolecules, 2011, 44: 2240-2244
[49] Lobb E J, Ma I, Billingham N C, Armes S P, Lewis A L. Journal of the American Chemical Society, 2001, 123: 7913-7914
[50] Donovan M S, Sumerlin B S, Lowe A B, McCormick C L. Macromolecules, 2002, 35: 8663-8666
[51] Lowe A B, McCormick C L. Progress in Polymer Science, 2007, 32: 283-351
[52] Yin M, Shen J, Pisula W, Liang M, Zhi L, Müllen K. Journal of the American Chemical Society, 2009, 131: 14618-14619
[53] Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y. Journal of the American Chemical Society, 2010, 132: 9268-9270
[54] Yin M, Bauer R, Klapper M, Müllen K. Macromolecular Chemistry and Physics, 2007, 208: 1646-1656
[55] Yin M, Cheng Y, Liu M, Gutmann J S, Müllen K. Angewandte Chemie, 2008, 120: 8528-8531
[56] Gohy J F, Willet N, Varshney S, Zhang J X, Jérme R. Angewandte Chemie, 2001, 113: 3314-3316
[57] Gillies E R, Jonsson T B, Fréchet J M J. Journal of the American Chemical Society, 2004, 126: 11936-11943
[58] Jung J, Lee I H, Lee E, Park J, Jon S. Biomacromolecules, 2007, 8: 3401-3407
[59] Zhang Z, Feng S S. Biomacromolecules, 2006, 7: 1139-1146
[60] Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, Wei Y, Pan C. Biomacromolecules, 2008, 9: 2615-2620
[61] Rodríguez-Hernández J, Lecommandoux S. Journal of the American Chemical Society, 2005, 127: 2026-2027
[62] Du J, Armes S P. Journal of the American Chemical Society, 2005, 127: 12800-12801
[63] Du J, Tang Y, Lewis A L, Armes S P. Journal of the American Chemical Society, 2005, 127: 17982-17983
[64] Li Y, Lokitz B S, McCormick C L. Angewandte Chemie International Edition, 2006, 45: 5792-5795
[65] Wan X, Liu T, Liu S. Biomacromolecules, 2011, 12: 1146-1154
[66] You Y Z, Oupicky D. Biomacromolecules, 2007, 8: 98-105
[67] Yan Q, Yuan J, Yuan W, Zhou M, Yin Y, Pan C. Chem. Commun. , 2008, 6188-6190
[68] Haba Y, Harada A, Takagishi T, Kono K. Journal of the American Chemical Society, 2004, 126: 12760-12761
[69] Discher D E, Eisenberg A. Science, 2002, 297: 967
[70] Guo Y, Xia F, Xu L, Li J, Yang W, Jiang L. Langmuir, 2009, 26: 1024-1028
[71] Nagl S, Wolfbeis O S. Analyst, 2007, 132: 507-511
[72] Wang G, Tong X, Zhao Y. Macromolecules, 2004, 37: 8911-8917
[73] Tong X, Wang G, Soldera A, Zhao Y. The Journal of Physical Chemistry B, 2005, 109: 20281-20287
[74] Yan B, Tong X, Ayotte P, Zhao Y. Soft Matter, 2011, 7: 10001-10009
[75] Wu S, Wang L, Kroeger A, Wu Y, Zhang Q, Bubeck C. Soft Matter, 2011, 2: 11535-11545
[76] Cabane E, Malinova V, Meier W. Macromolecular Chemistry and Physics, 2010, 211: 1847-1856
[77] Cabane E, Malinova V, Menon S, Palivan C G, Meier W. Soft Matter, 2011, 7: 9167-9176
[78] Qiu Y, Park K. Advanced Drug Delivery Reviews, 2001, 53: 321-339
[79] Xu S, Liu Y, Wang T, Li J. Analytical chemistry, 2011, 83: 3817-3823
[80] Pita M, Tam T K, Minko S, Katz E. ACS applied materials & interfaces, 2009, 1: 1166-1168
[81] Sung W J, Bae Y H. Analytical Chemistry, 2000, 72: 2177-2181
[82] Hassan C M, Doyle Iii F J, Peppas N A. Macromolecules, 1997, 30: 6166-6173
[83] Yao H, Hu N. The Journal of Physical Chemistry B, 2010, 114: 9926-9933
[84] Li W, Yuan R, Chai Y. The Journal of Physical Chemistry C, 2010, 114: 21397-21404
[85] Yao H, Hu N. The Journal of Physical Chemistry B, 2011, 115: 6691-6699
[86] Jin X, Zhang X, Wu Z, Teng D, Wang Y, Wang Z, Li C. Biomacromolecules, 2009, 10: 1337-1345
[87] Lee Y J, Pruzinsky S A, Braun P V. Langmuir, 2004, 20: 3096-3106
[88] Takahashi S, Anzai J. Langmuir, 2005, 21: 5102-5107
[89] Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2007, 8: 3842-3847
[90] Li C, Madsen J, Armes S P, Lewis A L. Angewandte Chemie International Edition, 2006, 45: 3510-3513
[91] Napoli A, Boerakker M J, Tirelli N, Nolte R J M, Sommerdijk N A J M, Hubbell J A. Langmuir, 2004, 20: 3487-3491
[92] Cerritelli S, Velluto D, Hubbell J A. Biomacromolecules, 2007, 8: 1966-1972
[93] Li Y, Lokitz B S, Armes S P, McCormick C L. Macromolecules, 2006, 39: 2726-2728
[94] Wang X, Chen X, Xie Z. Angewandte Chemie, 2008, 120: 7560-7563
[95] Wang J. Biosensors and Bioelectronics, 2006, 21: 1887-1892
[96] Abd-El-Aziz A S. Macromolecular Rapid Communications, 2002, 23: 995-1031
[97] Nguyen P, Gomez-Elipe P, Manners I. Chemical Reviews, 1999, 99: 1515-1548
[98] Zhou N, Zhang Z, Zhu J, Cheng Z, Zhu X. Macromolecules, 2009, 42: 3898-3905
[99] Ren L, Zhang J, Hardy C G, Doxie D, Fleming B, Tang C. Macromolecules, 2012, 45: 2267-2275
[100] Watson J D, Crick F H C. Nature, 1953, 171: 737-738
[101] Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G. Journal of the American Chemical Society, 1955, 77: 1708-1710
[102] Green M M, Peterson N C, Sato T, Teramoto A, Cook R, Lifson S. Science, 1995, 268: 1860-1866
[103] Nakano T, Okamoto Y. Chemical Reviews, 2001, 101: 4013-4038
[104] Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chemical Reviews, 2009, 109: 6102-6211
[105] Carreńo M C, García I, Núez I, Merino E, Ribagorda M, Pieraccini S, Spada G P. Journal of the American Chemical Society, 2007, 129: 7089-7100
[106] Jiang S, Liu M. Chemistry of Materials, 2004, 16: 3985-3987
[107] Li Y, Wang T, Liu M. Soft Matter, 2007, 3: 1312-1317
[108] Yashima E, Maeda K. Macromolecules, 2008, 41: 3-12
[109] Tanatani A, Mio M J, Moore J S. Journal of the American Chemical Society, 2001, 123: 1792-1793
[110] Meudtner R M, Hecht S. Angewandte Chemie International Edition, 2008, 47: 4926-4930
[111] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830-4838
[112] Sui K, Shan X, Gao S, Xia Y, Zheng Q, Xie D. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 2143-2153
[113] Yang L, Guo C, Jia L, Liang X, Liu C, Liu H. Journal of Colloid and Interface Science, 2010, 350: 22-29
[114] Gao M, Jia X, Li Y, Liang D, Wei Y. Macromolecules, 2010, 43: 4314-4323
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[9] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[10] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[11] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[12] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.