中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Biological Applications of Zwitterionic Polymers

Liu Hongyan, Zhou Jian   

  1. School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
PDF ( 2198 ) Cited
Export

EndNote

Ris

BibTeX

Zwitterionic polymers have hydrophilic anion and cation groups simultaneously, which make them highly hydrated and render them unique biological antifouling property, i.e., those polymers can resist nonspecific protein adsorption, bacterial adhesion, and biofilm formation. Such character makes them increasingly applied in a wide range of bio- and medical related fields recently. The widely accepted antifouling mechanisms, steric effects and hydration theory, are briefly introduced. Based on the biological antifouling character, zwitterionic polymers can be used in medical devices' antifouling coatings, antimicrobial coatings, anticoagulation coatings, biomedical diagnosis, drug delivery in vivo; gene delivery carriers, membrane separation and marine coatings. The article mainly reviews the progress of those applications. Finally, issues existed in these applications are also discussed and perspectives of these applications are put forward. Contents
1 Introduction
1.1 Steric repulsion theory
1.2 Hydration theory
2 Biological applications of zwitterionic polymers
2.1 Antifouling coating
2.2 Antimicrobial coating
2.3 Anticoagulation
2.4 Biomedical diagnosis
2.5 Drug delivery
2.6 Gene delivery
2.7 Others
3 Conclusion and perspective

CLC Number: 

[1] Frazier R A, Matthijs G, Davies M C, Roberts C J, Schacht E, Tendler S J B. Biomaterials, 2000, 21 (9): 957-966
[2] Bluemmel J, Perschmann N, Aydin D, Drinjakovic J, Surrey T, Lopez-Garcia M, Kessler H, Spatz J P. Biomaterials, 2007, 28 (32): 4739-4747
[3] Menz B, Knerr R, Gopferich A, Steinem C. Biomaterials, 2005, 26 (20): 4237-4243
[4] Metzke M, Bai J Z, Guan Z B. J. Am. Chem. Soc., 2003, 125 (26): 7760-7761
[5] Cheng G, Li G Z, Xue H, Chen S F, Bryers J D, Jiang S Y. Biomaterials, 2009, 30 (28): 5234-5240
[6] Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S Y. Biomaterials, 2007, 28 (29): 4192-4199
[7] Feng W, Brash J L, Zhu S P. Biomaterials, 2006, 27 (6): 847-855
[8] Yang W, Chen S F, Cheng G, Vaisocherova H, Xue H, Li W, Zhang J L, Jiang S Y. Langmuir, 2008, 24 (17): 9211-9214
[9] Alconcel S N S, Baas A S, Maynard H D. Polymer Chemistry, 2011, 2 (7): 1442-1448
[10] Chen S F, Zheng J, Li L Y, Jiang S Y. J. Am. Chem. Soc., 2005, 127 (41): 14473-14478
[11] Estephan Z G, Schlenoff P S, Schlenoff J B. Langmuir, 2011, 27 (11): 6794-6800
[12] Keefe A J, Jiang S. Nature Chemistry, 2012, 4 (1): 60-64
[13] Parrott M C, DeSimone J M. Nature Chemistry, 2012, 4 (1): 13-14
[14] Hasegawa T, Iwasaki Y, Ishihara K J. Biomed. Mater. Res., 2002, 63 (3): 333-341
[15] Carr L, Cheng G, Xue H, Jiang S. Langmuir, 2010, 26 (18): 14793-14798
[16] Carr L R, Xue H, Jiang S. Biomaterials, 2011, 32 (4): 961-968
[17] Jiang S, Cao Z. Adv. Mater., 2010, 22 (9): 920-932
[18] 刘荷英(Liu H Y), 何淑曼(He S M), 陈楚敏(Chen C M), 周健(Zhou J). 化工进展(Chemical Industry and Engineering Progress), 2009, 28 (03): 429-436
[19] Xie Y, Liu M, Zhou J. Appl. Surf. Sci., 2012, 258(20): 8153-8159
[20] Shao Q, He Y, White A D, Jiang S Y. J. Phys. Chem. B, 2010, 114 (49): 16625-16631
[21] Zheng J, Li L Y, Tsao H K, Sheng Y J, Chen S F, Jiang S Y. Biophys. J., 2005, 89 (1): 158-166
[22] Zheng J, Li L Y, Chen S F, Jiang S Y. Langmuir, 2004, 20 (20): 8931-8938
[23] Hower J C, He Y, Bernards M T, Jiang S Y. J. Chem. Phys., 2006, 125 (21): art. no. 214704
[24] Hower J C, He Y, Jiang S Y. J. Chem. Phys., 2008, 129 (21): art. no. 215101
[25] Latour R A. J. Biomed. Mater. Res., 2006, 78A (4): 843-854
[26] Chen S, Li L, Zhao C, Zheng J. Polymer, 2010, 51 (23): 5283-5293
[27] Chen S F, Liu L Y, Jiang S Y. Langmuir, 2006, 22 (6): 2418-2421
[28] Chang Y, Chen S F, Zhang Z, Jiang S Y. Langmuir, 2006, 22 (5): 2222-2226
[29] Zhang Z, Chen S F, Chang Y, Jiang S Y. J. Phys. Chem. B, 2006, 110 (22): 10799-10804
[30] Li G Z, Xue H, Cheng G, Chen S F, Zhang F B, Jiang S Y. J. Phys. Chem. B, 2008, 112 (48): 15269-15274
[31] Li G Z, Cheng G, Xue H, Chen S F, Zhang F B, Jiang S Y. Biomaterials, 2008, 29 (35): 4592-4597
[32] Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang S Y. Biomacromolecules, 2008, 9 (10): 2686-2692
[33] Yang W, Xue H, Li W, Zhang J, Jiang S. Langmuir, 2009, 25 (19): 11911-11916
[34] Holmlin R E, Chen X X, Chapman R G, Takayama S, Whitesides G M. Langmuir, 2001, 17 (9): 2841-2850
[35] Chen S, Jiang S. Adv. Mater., 2008, 20 (2): 335-338
[36] Bernards M T, Cheng G, Zhang Z, Chen S F, Jiang S Y. Macromolecules, 2008, 41 (12): 4216-4219
[37] Li G, Xue H, Gao C, Zhang F, Jiang S. Macromolecules, 2010, 43 (1): 14-16
[38] Zhang Z, Chao T, Jiang S Y. J. Phys. Chem. B, 2008, 112 (17): 5327-5332
[39] Carr L R, Krause J E, Ella-Menye J-R, Jiang S. Biomaterials, 2011, 32 (33): 8456-8461
[40] Carr L R, Zhou Y, Krause J E, Xue H, Jiang S. Biomaterials, 2011, 32 (29): 6893-6899
[41] Huang C J, Mi L, Jiang S. Biomaterials, 2012, 33 (14): 3626-3631
[42] Cheng G, Xite H, Zhang Z, Chen S F, Jiang S Y. Angew. Chem. Int. Ed., 2008, 47 (46): 8831-8834
[43] Zhang Z, Cheng G, Carr L R, Vaisocherova H, Chen S, Jiang S. Biomaterials, 2008, 29 (36): 4719-4725
[44] Cheng G, Xue H, Li G, Jiang S. Langmuir, 2010, 26 (13): 10425-10428
[45] Mi L, Bernards M T, Cheng G, Yu Q M, Jiang S Y. Biomaterials, 2010, 31 (10): 2919-2925
[46] Mi L, Xue H, Li Y, Jiang S. Adv. Funct. Mater., 2011, 21 (21): 4028-4034
[47] 潘才元(Pan C Y). 功能高分子(Functional Polymers). 北京: 科学出版社(Beijing: Science Press), 2006. 242: 226
[48] He S, Zhou J. Progress in Chemistry, 2010, 22 (4): 760-772
[49] Yuan J, Lin S, Shen J. Colloids Surf. B, 2008, 66 (1): 90-95
[50] Yuan J A, Bian R B, Ling T, Jian S, Lin S C. Colloids Surf. B, 2004, 36 (1): 27-33
[51] Zhou J, Yuan J, Zang X P, Shen J, Lin S C. Colloids Surf. B, 2005, 41 (1): 55-62
[52] Jiang X, Chen Q, Lin S, Shen J. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25 (6): 969-974
[53] Zhang Z, Chao T, Chen S F, Jiang S Y. Langmuir, 2006, 22 (24): 10072-10077
[54] Feng W, Zhu S P, Ishihara K, Brash J L. Biointerphases, 2006, 1 (1): 50-60
[55] 吴楠(Wu N), 金桥(Jin Q), 计剑(Ji J). 材料研究学报(Chinese Journal of Material Research), 2007, 21 (6): 589-592
[56] Zhang Z, Zhang M, Chen S F, Horbetta T A, Ratner B D, Jiang S Y. Biomaterials, 2008, 29 (32): 4285-4291
[57] Shih Y J, Chang Y. Langmuir, 2010, 26 (22): 17286-17294
[58] Chang Y, Shu S H, Shih Y J, Chu C W, Ruaan R C, Chen W Y. Langmuir, 2010, 26 (5): 3522-3530
[59] Zhang Z, Chen S, Jiang S. Biomacromolecules, 2006, 7 (12): 3311-3315
[60] Vaisocherova H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor A D, Piliarik M, Homola J, Jiang S. Biosens. Bioelectron., 2009, 24 (7): 1924-1930
[61] Yang W, Zhang L, Wang S, White A D, Jiang S. Biomaterials, 2009, 30 (29): 5617-5621
[62] Krause J E, Brault N D, Li Y, Xue H, Zhou Y, Jiang S. Macromolecules, 2011, 44 (23): 9213-9220
[63] Vaisocherova H, Yang W, Zhang Z, Cao Z Q, Cheng G, Piliarik M, Homola J, Jiang S Y. Anal. Chem., 2008, 80 (20): 7894-7901
[64] Jia G W, Cao Z Q, Xue H, Xu Y S, Jiang S Y. Langmuir, 2009, 25 (5): 3196-3199
[65] Brault N D, Gao C L, Xue H, Piliarik M, Homola J, Jiang S Y, Yu Q M. Biosens. Bioelectron., 2010, 25 (10): 2276-2282
[66] von Muhlen M G, Brault N D, Knudsen S M, Jiang S, Manalis S R. Anal. Chem., 2010, 82 (5): 1905-1910
[67] Cao Z, Brault N, Xue H, Keefe A, Jiang S. Angew. Chem. Int. Ed., 2011, 50 (27): 6102-6104
[68] Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S. Biomaterials, 2010, 31 (25): 6582-6588
[69] Zhang L, Xue H, Cao Z, Keefe A, Wang J, Jiang S. Biomaterials, 2011, 32 (20): 4604-4608
[70] Yang W, Xue H, Carr L R, Wang J, Jiang S Y. Biosens. Bioelectron., 2011, 26 (5): 2454-2459
[71] Chen X, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20 (12): 2331-2341
[72] Liu G Y, Lv P, Chen C J, Hu X F, Ji J. Macromol. Chem. Phys., 2011, 212 (6): 643-651
[73] Tu S, Chen Y W, Qiu Y B, Zhu K, Luo X L. Macromol. Biosci., 2011, 11 (10): 1416-1425
[74] Jia L, Xu J P, Wang H, Ji J. Colloids Surf., B, 2011, 84 (1): 49-54
[75] Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S. Langmuir, 2010, 26 (10): 6883-6886
[76] Kamenska E, Kostova B, Ivanov I, Rachev D, Georgiev G J. Biomater. Sci., Polym. Ed., 2009, 20 (2): 181-197
[77] Cao Z, Yu Q, Xue H, Cheng G, Jiang S. Angew. Chem. Int. Ed., 2010, 49 (22): 3771-3776
[78] Wolfert M A, Dash P R, Nazarova O, Oupicky D, Seymour L W, Smart S, Strohalm J, Ulbrich K. Bioconjugate Chem., 1999, 10 (6): 993-1004
[79] Ukawa M, Akita H, Masuda T, Hayashi Y, Konno T, Ishihara K, Harashima H. Biomaterials, 2010, 31 (24): 6355-6362
[80] Lam J K W, Ma Y, Armes S P, Lewis A L, Baldwin T, Stolnik S J. Controlled Release, 2004, 100 (2): 293-312
[81] Chim Y T A, Lam J K W, Ma Y, Armes S P, Lewis A L, Roberts C J, Stolnik S, Tendler S J B, Davies M C. Langmuir, 2005, 21 (8): 3591-3598
[82] Dai F, Liu W. Biomaterials, 2011, 32 (2): 628-638
[83] Dai F, Wang P, Wang Y, Tang L, Yang J, Liu W, Li H, Wang G. Polymer, 2008, 49 (24): 5322-5328
[84] Carr L R, Jiang S Y. Biomaterials, 2010, 31 (14): 4186-4193
[85] Sun Q, Su Y, Ma X, Wang Y, Jiang Z. J. Membr. Sci., 2006, 285 (1/2): 299-305
[86] Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z, Zhu S. J. Membr. Sci., 2008, 319 (1/2): 271-278
[87] Wang L, Su Y L, Zheng L, Chen W, Jiang Z. J. Membr. Sci., 2009, 340 (1/2): 164-170
[88] Chiang Y C, Chang Y, Higuchi A, Chen W Y, Ruaan R C. J. Membr. Sci., 2009, 339 (1/2): 151-159
[89] Chang Y, Chang W J, Shih Y J, Wei T C, Hsiue G H. ACS Appl. Mater. Interfaces, 2011, 3 (4): 1228-1237
[90] Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. J. Membr. Sci., 2009, 342 (1/2): 6-13
[91] Zhao J, Shi Q, Luan S, Song L, Yang H, Shi H, Jin J, Li X, Yin J, Stagnaro P. J. Membr. Sci., 2011, 369 (1/2): 5-12
[92] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J. Membr. Sci., 2010, 362 (1/2): 255-264
[93] Zhang Q, Zhang S, Dai L, Chen X. J. Membr. Sci., 2010, 349 (1/2): 217-224
[94] Yang R, Xu J, Ozaydin-Ince G, Wong S Y, Gleasont K K. Chem. Mater., 2011, 23 (5): 1263-1272
[95] Zhao Y H, Zhu X Y, Wee K H, Bai R. J. Phys. Chem. B, 2010, 114 (7): 2422-2429
[96] Zhang Z, Finlay J A, Wang L F, Gao Y, Callow J A, Callow M E, Jiang S Y. Langmuir, 2009, 25 (23): 13516-13521
[97] Aldred N, Li G Z, Gao Y, Clare A S, Jiang S Y. Biofouling, 2010, 26 (6): 673-683
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[5] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[6] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[7] Jiajia Wang, Huiying Wu, Renfeng Dong, Yuepeng Cai. Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy [J]. Progress in Chemistry, 2021, 33(5): 883-894.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[10] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[11] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[12] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[13] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[14] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[15] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.