中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Transition Metal-Catalyzed Trifluoromethylation Reaction of Aromatic Compounds

Qi Zisong, Dong Yali, Li Yaming, Duan Chunying   

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
  • Received: Revised: Online: Published:
PDF ( 1647 ) Cited
Export

EndNote

Ris

BibTeX

Transition metal-catalyzed trifluoromethylation of aromatic compounds has been developed rapidly during the last decade. The substrate scope is expanding, new methods and novel trifluoromethyl reagents are continuing to emerge. Recent advances in transition metal-catalyzed trifluoromethylation of aromatic compounds are summarized in this paper. The reactions involve trifluoromethylation of aryl halides, arylboronic acids and C—H trifluoromethylation of arenes. In addition, the mechanisms of transition metal-catalyzed trifluoromethylation are discussed in details. Contents
1 Trifluoromethylation of aryl halides
1.1 Copper-mediated (catalyzed) trifluoromethyla-tion
1.2 Palladium and other metal-mediated (catalyzed) trifluoromethylation
2 Trifluoromethylation of arylboronic acids
2.1 CF3 SiR3 as trifluoromethyl reagents
2.2 Electrophilic trifluoromethyl reagents
2.3 Other trifluoromethyl reagents
3 C—H trifluoromethylation of aromatics
3.1 Direct C—H trifluoromethylation of aromatics
3.2 Indirect C—H trifluoromethylation of aromatics
4 Conclusion and outlook

CLC Number: 

[1] Furuya T, Kamlet A S, Ritter T. Nature, 2011, 473: 470-477
[2] Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881-1886
[3] Meanwell N A J. Med. Chem., 2011, 54: 2529-2591
[4] Kirsch P. Modern Fluoroorganic Chemistry, Weinheim: Wiley-VCH, Germany, 2004, 203-278
[5] Lundgren R J, Stradiotto M. Angew. Chem. Int. Ed., 2010, 49: 9322-9324
[6] Tomashenko O A, Grushin V V. Chem. Rev., 2011, 111: 4475-4521
[7] Roy S, Gregg B T, Gribble G W, Le V D. Tetrahedron, 2011, 67: 2161-2195
[8] Zhang C P, Wang Z L, Chen Q Y, Zhang C T, Gu Y C, Xiao J C. Angew. Chem. Int. Ed., 2011, 50: 1896-1900
[9] Cottet F, Schlosser M. Eur. J. Org. Chem., 2002, 2002: 327-330
[10] Oishi M, Kondo H, Amii H. Chem. Commun., 2009, 45: 1909-1911
[11] Dubinina G G, Furutachi H, Vicic D A. J. Am. Chem. Soc., 2008, 130: 8600-8601
[12] Dubinina G G, Ogikubo J, Vicic D A. Organometallics, 2008, 27: 6233-6235
[13] Weng Z, Lee R, Jia W, Yuan Y, Wang W, Feng X, Huang K W. Organometallics, 2011, 30: 3229-3232
[14] Morimoto H, Tsubogo T, Litvinas N D, Hartwig J F. Angew. Chem. Int. Ed., 2011, 50: 3793-3798
[15] Tomashenko O A, Escudero-Adán E C, Belmonte M M, Grushin V V. Angew. Chem. Int. Ed., 2011, 50: 7655-7659
[16] Litvinas N D, Fier P S, Hartwig J F. Angew. Chem. Int. Ed., 2012, 51: 536-539
[17] McReynolds K A, Lewis R S, Ackerman L K G, Dubinina G G, Brennessel W W, Vicic D A. J. Fluorine Chem., 2010, 131: 1108-1112
[18] Duan C, Li Y, Chen T, Wang H, Zhang R, Jin K, Wang X. Synlett, 2011, 1713-1716
[19] Knauber T, Arikan F, Rschenthaler G V, and Gooen L J. Chem. Eur. J., 2011, 17: 2689-2697
[20] Kondo H, Oishi M, Fujikawa K, Amii H. Adv. Synth. Catal., 2011, 353: 1247-1252
[21] Culkin D A, Hartwig J F. Organometallics, 2004, 23: 3398-3416
[22] Grushin V V, Marshall W J. J. Am. Chem. Soc., 2006, 128: 12644-12645
[23] Grushin V V, Marshall W J. J. Am. Chem. Soc., 2006, 128: 4632-4641
[24] Kamer P C J, van Leeuwen P W N M, Reek J N H. Acc. Chem. Res., 2001, 34: 895-904
[25] Yin J, Buchwald S L. J. Am. Chem. Soc., 2002, 124: 6043-6048
[26] Bakhmutov V I, Bozoglian F, Gómez K, González G, Grushin V V, Macgregor S A, Martin E, Miloserdov F M, Novikov M A, Panetier J A, Romashov L V. Organometallics, 2011, 31: 1315-1328
[27] Ball N D, Kampf J W, Sanford M S. J. Am. Chem. Soc., 2010, 132: 2878-2879
[28] Ball N D, Gary J B, Ye Y, Sanford M S. J. Am. Chem. Soc., 2011, 133: 7577-7584
[29] Ye Y, Ball N D, Kampf J W, Sanford M S. J. Am. Chem. Soc., 2010, 132: 14682-14687
[30] Cho E J, Senecal T D, Kinzel T, Zhang Y, Watson D A, Buchwald S L. Science, 2010, 328: 1679-1681
[31] Samant B S, Kabalka G W. Chem. Commun., 2011, 47: 7236-7238
[32] Dubinina G G, Brennessel W W, Miller J L, Vicic D A. Organometallics, 2008, 27: 3933-3938
[33] Chu L, Qing F L. Org. Lett., 2010, 12: 5060-5063
[34] Chu L, Qing F L. J. Am. Chem. Soc., 2010, 132: 7262-7263
[35] Senecal T D, Parsons A T, Buchwald S L. J. Org. Chem., 2011, 76: 1174-1176
[36] Xu J, Luo D F, Xiao B, Liu Z J, Gong T J, Fu Y, Liu L. Chem. Commun., 2011, 47: 4300-4302
[37] Liu T, Shen Q. Org. Lett., 2011, 13: 2342-2345
[38] Zhang C P, Cai J, Zhou C B, Wang X P, Zheng X, Gu Y C, Xiao J C. Chem. Commun., 2011, 47: 9516-9518
[39] Khan B A, Buba A E, Gooen L J. Chem. Eur. J., 2012, 18: 1577-1581
[40] Wiehn M S, Vinogradova E V, Togni A. J. Fluorine Chem., 2010, 131: 951-957
[41] Ye Y, Lee S H, Sanford M S. Org. Lett., 2011, 13: 5464-5467
[42] Hafner A, Bräse S. Angew. Chem. Int. Ed., 2012, 51: 3713-3715
[43] Wang X, Truesdale L, Yu J Q. J. Am. Chem. Soc., 2010, 132: 3648-3649
[44] Loy R N, Sanford M S. Org. Lett., 2011, 13: 2548-2551
[45] Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett., 2010, 51: 5947-5949
[46] Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J., 2011, 17: 6039-6042
[47] Chu L, Qing F L. J. Am. Chem. Soc., 2012, 134: 1298-1304
[48] Liu T, Shao X, Wu Y, Shen Q. Angew. Chem. Int. Ed., 2012, 51: 540-543
[49] Xiao J C, Ye C, Shreeve J n M. Org. Lett., 2005, 7: 1963-1965
[1] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[2] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
[3] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[4] He Weiming, Weng Zhiqiang*. Synthesis of Aryl Trifluoromethyl Thioethers [J]. Progress in Chemistry, 2013, 25(07): 1071-1078.
[5] Li Xiangzi, Yu Rui, Wei Xianwen. Perfluoroalkylation of Fullerenes [J]. Progress in Chemistry, 2011, 23(6): 1148-1164.
[6] Liu Jinqiang, Qian Chao, Chen Xinzhi. Nitration of Deactivated Aromatic Compounds [J]. Progress in Chemistry, 2009, 21(12): 2635-2641.
[7] . Microbial Degradation of Nitroaromatic Compounds [J]. Progress in Chemistry, 2009, 21(0203): 534-539.
[8] Bo Yang, Gang Yu**,Zulin Zhang. Study on the Application of Electrochemical Methods to the Destruction of Chlorinated Aromatic Pollutants [J]. Progress in Chemistry, 2006, 18(01): 87-92.
[9] Zhao Ping1,Yin Yingwu1,2**. Development of the Anodic Cyanation Reaction [J]. Progress in Chemistry, 2004, 16(06): 926-.