中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes

Li Xiangzi1,2, Wei Xianwen1*   

  1. 1. College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China;
    2. Department of Chemistry, Wannan Medical College, Wuhu 241002, China) Abstract Magnetic metal nanotubes (MMNTs
  • Received: Revised: Online: Published:
PDF ( 794 ) Cited
Export

EndNote

Ris

BibTeX

Magnetic metal nanotubes (MMNTs) have novel hollow structures with inner and outer active surface and special properties of catalysis, magnetism and easier modification, which gradually become an important sort of one-dimension functional nanomaterials. MMNTs exhibit potential applications in the fields of molecular devices, magnetic materials, biomedicine, etc, and have drawn wide attention during last decade. In this paper, the main strategies for fabricating MMNTs via hard templates have been summarized, including electrodeposition, chemical deposition, template wetting, atomic layer deposition and hydrothermal processing technology. The special fabricating technologies for MMNTs based on hard-template, such as channels chemical modification, multistep template replication, high current, mercury cathode, precursor, sensitization, activation and other processing parameters, etc. are emphasized. Simultaneously, a formation mechanism for fabricating MMNTs via hard templates has been established, which contains three main aspects: substrates properties, nucleation environments and growth environments. The formation mechanisms of MMNTs under the different fabricating strategies, such as high-current-assisted-annular-substrate tubular growth, current-directed tubular growth, gas assistant tubular growth and so on, have been compared. Moreover, some other factors including the hydration layer, the mobilities of metal ions, the complexation of metal ions and current modes, also play important roles in the formation of nanotubes. Finally, the magnetic properties, the potential applications, and developing trends of MMNTs are discussed in brief. Contents
1 Introduction
2 Fabrication strategies of the magnetic metal nanotubes(MMNTs)
2.1 Hard-template-based technologies
2.2 Solution phase synthesize with soft template assistance
3 Formation mechanisms for fabrication MMNTs via hard templates
3.1 Substrates
3.2 Nucleation environments
3.3 Growth environments
4 Properties and potential applications of MMNTs
4.1 Magnetic properties
4.2 Biological applications
5 Outlooks

CLC Number: 

[1] Iijima S. Nature, 1991, 354: 56-58
[2] Rao C N R, Nath M. Dalton Trans., 2003, 1-24
[3] Martin C R, van Dyke L S, Cai Z, Liang W. J. Am. Chem. Soc., 1990, 112: 8976-8977
[4] Brumlik C J, Martin C R. J. Am. Chem. Soc., 1991, 113: 3174-3175
[5] Martin C R. Science, 1994, 266: 1961-1966
[6] Jirage K B, Hulteen J C, Martin C R. Science, 1997, 278: 655-658
[7] Hulteen J C, Martin C R. J. Mater. Chem., 1997, 7(7): 1075-1087
[8] Martin C R, Nishizawa M, Jirage K, Kang M. J. Phys. Chem. B, 2001, 105(10): 1925-1934
[9] Lee S B, Martin C R. J. Am. Chem. Soc., 2002, 124: 11850-11851
[10] 李祥子(Li X Z), 魏先文(Wei X W). 化学研究(Chemical Research), 2006, 17(2): 97-101
[11] Bao J C, Tie C Y, Xu Z, Zhou Q F, Shen D, Ma Q. Adv. Mater., 2001, 13: 1631-1633
[12] Bao J C, Wang K Y, Xu Z, Zhang H, Lu Z H. Chem. Commun., 2003, 208-209
[13] Bao J C, Xu Z, Hong J M, Ma X, Lu Z H. Scripta Mater., 2004, 50: 19-23
[14] Tao F F, Guan M Y, Jiang Y, Zhu J M, Xu Z, Xue Z L. Adv. Mater., 2006, 18: 2161-2164
[15] Lee W, Scholz R, Nielsch K, Gösele U. Angew. Chem. Int. Ed., 2005, 44: 6050-6054
[16] Tourillon G, Pontonnier L, Levy J P, Langlais V. Electrochem. Solid-State Lett., 2000, 3 (1): 20-23
[17] Verbeeck J, Lebedev O I, Van Tendeloo G, Cagnon L, Bougerol C, Tourillon G. J. Electrochem. Soc., 2003, 150(10): E468-E471
[18] Xue S H, Cao C B, Zhu H S. J. Mater. Sci., 2006, 41: 5598-5601
[19] Xue S H, Cao C B, Wang D Z, Zhu H S. Nanotechnology, 2005, 16: 1495-1499
[20] Xue S H, Li M, Wang Y H, Xu X M. Thin Solid Films, 2009, 517: 5922-5926
[21] Mu C, Yu Y X, Wang R M, Wu K, Xu D S, Guo G L. Adv. Mater., 2004, 16: 1550-1553
[22] Wang Q T, Wang G Z, Han X H, Wang X P, Hou J G. J. Phys. Chem. B, 2005, 109: 23326-23329
[23] Yanagishita T, Nishio K, Masuda H. Adv. Mater., 2005, 17: 2241-2243
[24] Yoo W, Lee J. Adv. Mater., 2004, 16: 1097-1101
[25] Liu L F, Zhou W Y, Xie S S, Song L, Luo S D, Liu D F, Shen J, Zhang Z G, Xiang Y J, Ma W J, Ren Y, Wang C Y, Wang G. J. Phys. Chem. C, 2008, 112: 2256-2261
[26] Xu X J, Yu S F, Lau S P, Li L, Zhao B C. J. Phys. Chem. C, 2008, 112: 4168-4171
[27] Fu J, Cherevko S, Chung C H. Electrochem. Commun., 2008, 10: 514-518
[28] Wu M T, Leu I C, Yen J H, Hon M H. J. Phys. Chem. B, 2005, 109: 9575-9580
[29] Wang X W, Yuan Z H, Sun S Q, Duan Y Q, Bie L. J. Mater. Chem. Phys., 2008, 112: 329-332
[30] Wang X W, Yuan Z H, Fang B C. Mater. Chem. Phys., 2011, 125: 1-4
[31] Liu H J, Wang F, Zhao Y B, Liu J J, Park K, Endo M J. Electroanalytical Chem., 2009, 633 (1): 15-18
[32] Roman K , Pe ko D, Suhodol an L, McGuiness P J, Kobe S. J. Alloy. Comp., 2011, 509: 551-555
[33] Roman K , Pe ko D, turm S, Maver U, Nadrah P, Bele M, Kobe S. Mater. Chem. Phys., 2012, 133(1): 218-224
[34] Cao H Q, Wang L D, Qiu Y, Wu Q Z, Wang G Z, Zhang L, Liu X W. ChemPhysChem, 2006, 7: 1500-1504
[35] Li D D, Thompson R S, Bergmann G, Lu J G. Adv. Mater., 2008, 20: 4575-4578
[36] Li X R, Wang Y Q, Song G J, Peng Z, Yu Y M, She X L, Li J. J. Nanoscale Res. Lett., 2009, 4: 1015-1020
[37] Davis D M, Podlaha E J. Electrochem. Solid-State Lett., 2005, 8 (2): D1-D4
[38] Fukunaka Y, Motoyama M, Konishi Y, Ishii R. Electrochem. Solid-State Lett., 2006, 9 (3): C62-C64
[39] Roman K , turm S, Samardija Z, McGuiness P J, Kobe S. Mater. Chem. Phys., 2009, 118: 105-110
[40] Narayanan T N, Shaijumon M M, Ajayan P M, Anantharaman M R. J. Phys. Chem. C, 2008, 112: 14281-14285
[41] Liu J J, Wang F, Zhai J Y, Ji J. J. Electroanalytical Chem., 2010, 642: 103-108
[42] Atalay F E, Kaya H, Yagmur V, Tarib A S S, Avsar D. Appl. Sur. Sci., 2010, 256: 2414-2418
[43] Li X Z, Wei X W, Ye Y. Mater. Lett., 2009, 63: 578-580
[44] 李祥子(Li X Z), 冯志君(Feng Z J). 材料导报(Materials Review), 2010, 24(5): 112-114
[45] Li X Z, Wei X W, Ye Y. J. Non-Cryst. Solids, 2009, 355(45/47): 2233-2238
[46] Lin S C, Chen S Y, Cheng S Y, Lin J C. Solid State Sci., 2005, 7: 896-900
[47] Wang W, Li N, Li X T, Geng W C, Qiu S L. Mater. Res. Bull., 2006, 41: 1417-1423
[48] Rohan J F, Casey D P, Ahern B M, Rhen F M F, Roy S, Fleming D, Lawrence S E. Electrochem. Commun., 2008, 10: 1419-1422
[49] Ren X, Jiang C H, Huang X M, Li D D. Physica E, 2009, 41: 349-352
[50] Azizi A, Mohammadi M, Sadrnezhaad S K. Mater. Lett., 2011, 65: 289-292
[51] Xie G W, Wang Z B, Li G C, Shi Y L, Cui Z L, Zhang Z K. Mater. Lett., 2007, 61: 2641-2643
[52] Sui Y C, Skomski R, Sorge K D, Sellmyer D. J. Appl. Phys. Lett., 2004, 84: 1525-1527
[53] Li F S, Zhou D, Wang T, Wang Y, Song L J, Xu C T. J. Appl. Phys., 2007, 101: art. no. 014309
[54] Zhou D, Cai L H, Wen F S, Li F S. Chin. J. Chem. Phys., 2007, 20(6): 821-825
[55] Zhou D, Li Z W, Yang X, Wen F S, Li F S. Chin. Phys. Lett., 2008, 25 (5): 1865-1867
[56] Nielsch K, Castaño F J, Matthias S, Lee W, Ross C A. Adv. Eng. Mater., 2005, 7(4): 217-221
[57] Xu Y, Xue D S, Fu J L, Gao D Q, Gao B. J. Phys. D: Appl. Phys., 2008, 41: art. no. 215010
[58] Daub M, Knez M, Goesele U, Nielsch K. J. Appl. Phys., 2007, 101: art. no. 09J111
[59] Wu M N, Zhu Y C, Zheng H G, Qian Y T. Inorg. Chem. Commun., 2002, 5: 971-974
[60] Zhu Y, Guo X K, Shen Y Q, Mo M, Guo X F, Ding W P, Chen Y. Nanotechnology, 2007, 18: art. no. 195601
[61] Shi R R, Liu X H, Shi Y G, Ma R Z, Jia B P, Zhang H T, Qiu G Z. J. Mater. Chem., 2010, 20: 7634-7636
[62] Lee J, Suess D, Schreflc T, Oha K H, Fidler J. J. Magn. Magn. Mater., 2007, 310: 2445-2447
[63] Usov N A, Zhukov A, Gonzalez J. J. Magn. Magn. Mater., 2007, 316: 255-261
[64] González A L, Landeros P, Núñez DA' S. J. Magn. Magn. Mater., 2010, 322: 530-535
[65] Yan M, Andreas C, Kákay A, García-Sánchez F, Hertel R. Appl. Phys. Lett., 2011, 99: art. no. 122505
[66] Khizroev S, Kryder M H, Litvinov D. Appl. Phys. Lett., 2002, 81: 2256-2257
[67] Albrecht O, Zierold R, Allende S, Escrig J, Patzig C, Rauschenbach B, Nielsch K, Görlitz D. J. Appl. Phys., 2011, 109: art. no. 093910
[68] Han X F, Shamaila S, Sharif R, Chen J Y, Liu H R, Liu D P. Adv. Mater., 2009, 21: 4619-4624
[69] Landeros P, Allende S, Escrig J, Salcedo E, Altbir D. Appl. Phys. Lett., 2007, 90: art. no. 102501
[70] Davis D M, Moldovan M, Young D P. Electrochem. Solid-State Lett., 2006, 9(9): C153-C155
[71] Son S J, Bai X, Nan A J, Ghandehari H, Lee S B. J. Control. Release, 2006, 114: 143-152
[72] Tian J H, Hu J, Zhang F, Li X, Shi J, Liu J, Tian Z Q, Chen Y. Microelectron. Eng., 2011, 88: 1702-1706
[1] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[2] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[3] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[4] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[5] Wang Cong, Liu Xiufeng**, Cui Ruili, Zhang Baoquan. Formation and Reparation of Defects in Zeolite Membranes [J]. Progress in Chemistry, 2008, 20(12): 1860-1867.