中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Visible-Light Responsed Bi2WO6 Photocatalysts

Feng Yan, Wu Qingsong, Zhang Guoying, Sun yaqiu   

  1. College of Chemistry, Tianjin Normal University, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, 300387 Tianjin, China
  • Received: Revised: Online: Published:
PDF ( 942 ) Cited
Export

EndNote

Ris

BibTeX

Bi2WO6 materials exhibit excellent visible-light photocatalytic activity due to the narrow band gap and special layered structure. This paper summarizes the research achievements on the improvements of photocatalytic property and practicability of Bi2WO6. Nanostructured Bi2WO6 materials are firstly introduced. The fabrication of Bi2WO6 nanostructures is found to be an effective strategy to enhance the photocatlytic activity for high surface areas. Then works on hierarchical Bi2WO6 superstructures are presented. In comparison with tiny Bi2WO6 nanostructures, the microscale superstructures are more practical for easy recovery. And channels or mesopores which are beneficial for ion transport often appear among nanostructured building units. Then the modification of Bi2WO6 photocatalyst is summarized which includes the composite heterostructures with metal oxides, surface deposition of metal or grapheme, and doping with metal ion or non-metal ion, etc. In addition, the immobilization techniques of Bi2WO6 materials are reviewed. Finally, the development trend of Bi2WO6 photocatalyts is prospected. It is emphasized that the band gap adjustment of Bi2WO6 and interfacial states of its heterostructures should be strengthened. And theoretical calculation would assist to in-depth understand the photocatalytic mechanism, which would be helpful in the improvement of existing photocatalysts and designing novel visible-light responsive photocatalyst. Contents
1 Introduction
2 Nanostructured Bi2WO6 photocatalyst
3 Hierarchical Bi2WO6 photocatalyst
3.1 Adjustment of medium acidity
3.2 Assistant of organic additive and template
3.3 Addition of inorganic salts
4 Heterostructured Bi2WO6 photocatalyst
4.1 Combination with metal oxide
4.2 Carbon modification
4.3 Metal deposition
5 Ion doping of Bi2WO6 photocatalyst
6 Immobilization of Bi2WO6 photocatalyst
7 Conclusion and prospect

CLC Number: 

[1] Kamat P V. Chem. Rev., 1993, 93: 267-300
[2] Wang R, Hashimoto K, Fujishima K, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431-432
[3] Chen X B, Mao S S. Chem. Rev., 2007, 107: 2891-2959
[4] Tang J W, Zou Z G, Ye J H. Angew. Chem. Int. Ed., 2004, 43: 4463-4466
[5] Zhu H Y, Chen X, Zheng Z F, Ke X B, Jaatinen E, Zhao J C, Guo C, Xie T F, Wang D J. Chem. Commun., 2009, 7524-7526
[6] Wang D F, Kako T, Ye J H. J. Am. Chem. Soc., 2008, 130: 2724-2725
[7] McDowell N A, Knight K S, Lightfoot P. Chem. Eur. J., 2006, 12: 1493-1499
[8] Tang J W, Zhou Z G, Ye J H. Catal. Lett., 2004, 92: 53-56
[9] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl. Catal. B, 2006, 66: 100-110
[10] Xiao Q, Zhang J, Xiao C, Tan X K. Catal. Comm., 2008, 9: 1247-1253
[11] Kudo A, Hijii S. Chem. Lett., 1999, 1103-1104
[12] Tang J W, Zou Z G, Ye J H. Catal. Lett., 2004, 92: 53-56
[13] Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. J. Am. Chem. Soc., 2009, 131: 12540-12541
[14] Zhang C, Zhu Y F. Chem. Mater., 2005, 17: 3537-3545
[15] Shang M, Wang W Z, Sun S M, Zhou L, Zhang L. J. Phys. Chem. C, 2008, 112: 10407–10411
[16] Xu C X, Wei X, Ren Z H, Wang Y, Xu G, Shen G, Han G R. Mater. Lett., 2009, 63: 2194–2197
[17] Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Catal. Today, 2008, 131: 15–20
[18] Zhang G K, Lü F, Li M, Yang J L, Zhang X Y, Huang B B. J. Phys. Chem. Solids, 2010, 71: 579-582
[19] Saison T, Chemin N, Chanéac C, Durupthy O, R uaux V, Mariey L, Maugé F, Beaunier P, Jolivet J P. J. Phys. Chem. C, 2011, 115: 5657-5666
[20] Zhang G Q, Chang N, Han D Q, Zhou A Q, Xu X H. Mater. Lett., 2010, 64: 2135-2137
[21] Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yan S C, Zou Z G. Appl. Mater. inter., 2011, 3: 3594-3601
[22] Shang M, Wang W Z, Xu H L. Cryst. Growth Des., 2009, 9: 991-996
[23] Zhang G Y, Feng Y, Wu Q S, Xu Y Y, Gao D Z. Mater. Res. Bull., 2012, 47: 1919-1924
[24] Zhang L S, Wang W Z, Chen Z G, Zhou L, Xu H L, Zhu W. J. Mater. Chem., 2007, 17: 2526-2532
[25] Xu C X, Wei X, Guo Y M, Wu H Q, Ren Z H, Xu G, Shen G, Han G H. Mater. Res. Bull., 2009, 44: 1635-1641
[26] Li Y Y, Liu J P, Huang X T. Nanoscale Res. Lett., 2008, 3: 365-371
[27] Wang W Z, Poudel B, Ma Y, Ren Z F. J. Phys. Chem. B, 2006, 110: 25702-25706
[28] Wu J, Duan F, Zheng Y, Xie Y. J. Phys. Chem. C, 2007, 111: 12866-12871
[29] Li Y Y, Liu J P, Huang X T, Li G Y. Cryst. Growth Des., 2007, 7: 1350-1355
[30] Li Y Y, Liu J P, Huang X T. Nanoscale Res. Lett., 2008, 3: 365-371
[31] Zhang L S, Wang W Z, Zhou L, Xu H L. Small, 2007, 9: 1618-1625
[32] Liu S W, Yu J G. J Solid State Chem., 2008, 181: 1048-1055
[33] Zhang LW, Baumanis C, Robbern L, Kandiel T, Bahnemann D. Small, 2011, 7: 2714-2720
[34] Ma D K, Huang S M, Chen W X, Hu S W, Shi F F, Fan K L. J. Phys. Chem. C, 2009, 113: 4369-4374
[35] Cao X F, Zhang L, Chen X T, Xue Z L. Cryst. Eng. Comm., 2011, 13: 306-311
[36] Huang Y, Wu J H, Huang M L, Lin J M, Huang Y F, Huang Y. Sci. China Chem., 2011, 54: 211-216
[37] Korte K E, Skrabalak S E, Xia Y N. J. Mater. Chem., 2008, 18: 437-441
[38] Chen Z, Qian L W, Zhu J, Yuan Y P, Qian X F. Cryst. Eng. Comm., 2010, 12: 2100-2106
[39] Robert D. Catal. Today, 2007, 122: 20-26
[40] Zhang J, Bang J H, Tang C C, Kamat P V. ACS Nano., 2010, 4: 387-395
[41] Gui M S, Zhang W D. Nanotechnology, 2011, art. nn. 22: 265601
[42] Ge M, Li Y F, Liu L, Zhou Z, Chen W. J. Phys. Chem. C, 2011, 115: 5220-5225
[43] Zhou Y, Vuille E, Heel A, Patzke G R. Z. Anorg. Allg. Chem., 2009, 635: 1848-1855
[44] Murcia L S, Hidalgo M C, Navío J A, Colón G. J. Hazard. Mater., 2011, 185: 1425-1434
[45] Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. J. Phys. Chem. C, 2011, 115: 7419-7428
[46] Cui Z K, Zeng D W, Tang T T, Liu J, Xie C S. Catal. Comm., 2010, 11: 1054-1057
[47] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41: 6234-6239
[48] Chen Y L, Cao X X, Kuang J D, Chen Z, Chen J L, Lin B Z. Catal. Comm., 2010, 12: 247-250
[49] Gao E P, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887-2893
[50] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans., 2010, 39: 3420-3425
[51] Sonawane R S, Dongare M K. J. Mol. Catal. A: Chem., 2006, 243: 68-76
[52] Xu J H, Wang W Z, Gao E P, Ren J, Wang L. Catal. Comm., 2011, 12: 834-838
[53] Ren J, Wang W Z, Sun S M, Zhang L, Chang J. Appl. Catal. B, 2009, 92: 50-55
[54] Zhang L S, Wong K H, Chen Z G, Yu J C, Zhao J C, Hu C, Chan C Y, Wong P K. Appl. Catal., 2009, 363: 221-229
[55] Zhang L S, Wong K H, Yip H Y, Hu C, Yu J C, Chan C Y, Wong P K. Environ. Sci. Technol., 2010, 44: 1392-1398
[56] Duan F, Zheng Y, Chen M Q. Appl. Surf. Sci., 2011, 257: 1972-1978
[57] Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Environ. Sci. Technol., 2008, 42: 2085-2091
[58] Shi R, Huang G L, Lin J, Zhu Y F. J. Phys. Chem. C, 2009, 113: 19633-19638
[59] Shang M, Wang W Z, Zhang L, Xu H L. Mater. Chem. Phys., 2010, 120: 155-159
[60] Zhang Z J, Wang W Z, Gao E P, Shang M, Xu J H. J. Hazard. Mater., 2011, 196: 255-262
[61] Shang M, Wang W Z, Zhang L, Sun S M, Wang L, Zhou L. J. Phys. Chem. C, 2009, 113: 14727-14731
[62] Zhang L, Wang W Z, Shang M, Sun S M, Xu J H. J. Hazard. Mater., 2009, 172: 1193-1197
[63] Xu J H, Wang W Z, Shang M, Sun S M, Ren J, Zhang L. Appl. Catal. B, 2010, 257: 227-232
[1] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[4] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[7] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[8] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[9] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[10] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[11] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[15] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.