中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Photocatalytic Reduction of CO2 on TiO2 Catalysts

Wang Huixiang1,2, Jiang Dong1*, Wu Dong1, Li Debao1, Sun Yuhan1   

  1. 1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001,China;
    2. University of Chinese Academy of Sciences, Beijing 100049,China
  • Received: Revised: Online: Published:
PDF ( 1358 ) Cited
Export

EndNote

Ris

BibTeX

The technology of photocatalytic reduction of CO2 has potential applications and good prospects for the development in the management and utilization of CO2. This paper briefly reviews TiO2 catalytic materials studied for photocatalytic reduction of CO2, including pure TiO2, supported TiO2, metal-modified TiO2, compound semiconductor TiO2, and organic photosensitized TiO2 catalysts. In addition, the photocatalytic activities of the catalysts are discussed. Contents
1 Introduction
2 Mechanism of photocatalytic reduction of CO2
3 Research progress in photocatalytic reduction of CO2
3.1 Photocatalytic reduction of CO2 on pure TiO2
3.2 Photocatalytic reduction of CO2 on supported TiO2
3.3 Photocatalytic reduction of CO2 on metal-modified TiO2
3.4 Photocatalytic reduction of CO2 on compound semiconductor TiO2
3.5 Photocatalytic reduction of CO2 on organic photosensitized TiO2
4 Conclusion and outlook

CLC Number: 

[1] Metz B, Davidson O, Coninck H D, Loos M, Meyer L. Carbon Dioxide Capture and Storage. UK: Cambrige University Press, 2005. 105- 337
[2] 张庆富(Zhang Q F), 杨文芳(Yang W F). 毛纺科技(Wool Textile Journal), 2011, 39: 48-54
[3] Lagowski J J. Modern Inorganic Chemistry. New York: Marcel Dekker, 1973. 68-80
[4] 高兆蔚(Gao Z W). 林业资源管理(Forest Resources Management), 2003, (2): 31-32
[5] Tanaka K, Miyahara K, Toyoshima I. J. Phys. Chem. C, 1984, 88: 3504-3508
[6] Kaneco S, Kurimoto H, Ohta K, Mizuno T, Saji A. J. Photochem. Photobiol. A, 1997, 109: 59-63
[7] Lo C C, Hung C H, Yuan C S, Wu J F. Sol. Energy Mater. Sol. Cells, 2007, 91: 1765- 1774
[8] Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Appl. Catal. B, 2010, 100: 386- 392
[9] Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277: 637-638
[10] Anpo M, Yamashita H, Ichihashi Y, Ehara S. J. Electroanal. Chem., 1995, 396: 21- 26
[11] Yamashita H, Kamade N, He H, Tanaka K, Ehara S, Anpo M. Chem. Lett., 1994, 855-858
[12] Vijayan B, Dimitrijevic N M, Rajh T, Gray K. J. Phys. Chem. C, 2010, 114: 12994- 13002
[13] Ko í K, Obalová L, Matějová L, Plachá D, Lacn Z, Jirkovsk J, olcová O. Appl. Catal. B, 2009, 89: 494-502
[14] Mizuno T, Adachi K, Ohta K, Saji A. J. Photochem. Photobiol. A, 1996, 98: 87- 90
[15] Dey G R, Belapurkar A D, Kishore K. J. Photochem. Photobiol. A, 2004, 163: 503-508
[16] Ko í K, Matějka V, Ková P, Lacn Z, Obalová L. Catal. Today, 2011, 161: 105-109
[17] Pathak P, Meziani M J, Li Y, Cureton L T, Sun Y P. Chem. Commun., 2004, 1234-1235
[18] Anpo M, Chiba K. J. Mol. Catal., 1992, 74: 207-212
[19] Liu B J, Torimoto T, Yoneyama H. J. Photochem. Photobiol. A, 1998, 115: 227-230
[20] 刘亚琴(Liu Y Q), 徐耀(Xu Y), 李志杰(Li Z J), 张秀萍(Zhang X P), 吴东(Wu D), 孙予罕(Sun Y H). 化学学报(Acta Chimica Sinica), 2006, 64(6): 453- 457
[21] 刘亚琴(Liu Y Q). 山西煤炭化学研究所硕士论文(Master Dissertation Institute of Coal Chemistry, Chinese Academy of Sciences), 2006
[22] Linsebigler A L, Lu G, Yates J T. Chem. Rev., 1995, 95: 735-758
[23] Wu J C S, Lin H M, Lai C L. Appl. Catal. A, 2005, 296: 194-200
[24] Wu J C S, Wu T H, Chu T, Huang H, Tsai D. Top. Catal., 2008, 47: 131-136
[25] Yamashita H, Nishiguchi H, Kamada N, Anpo M. Res. Chem. Intermed., 1994, 20: 815-823
[26] Zhang Q H, Han W D, Hong Y J, Yu J G. Catal. Today, 2009, 148: 335-340
[27] Ko í K, Matěj K, Obalová L, Krej íková S, Lacn Z, Plachá D, apek L, Hospodková A, olcová O. Appl. Catal. B, 2010, 96: 239-244
[28] Tseng I H, Wu J C S, Chou H Y. J. Catal., 2004, 221: 432-440
[29] Hiranot K, Inoue K, Yatsu T. J. Photochem. Photobiol. A, 1992, 64: 255-258
[30] Ishitani O, Inoue C, Suzuki Y, Ibusuki T. J. Photochem. Photobiol. A, 1993, 72: 269- 271
[31] Sasirekha N, Basha S, Shanthi K. Appl. Catal. B, 2006, 62: 169-180
[32] Baker D R, Kamat P V. Adv. Funct. Mater., 2009, 19: 805-811
[33] Qin S Y, Xin F, Liu Y D, Yin X H. J. Colloid interface Sci., 2011, 356: 257-261
[34] 陈崧哲(Chen S Z), 钟顺和(Zhong S H). 物理化学学报(Acta Phys. -Chim. Sin. ), 2002, 18(12): 1099-1103
[35] 赵春(Zhao C), 钟顺和(Zhong S H). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20: 1131-1136
[36] 梅长松(Mei C S), 钟顺和(Zhong S H). 化学学报(Acta Chimica Sinica), 2005, 63: 1789-1794
[37] 梅长松(Mei C S), 钟顺和(Zhong S H). 无机材料学报(Journal of Inorganic Materials), 2005, 20: 1396-1402
[38] Truong Q D, Liu J Y, Chung C C, Ling Y C. Catal. Commun., 2012, 19: 85-89
[39] Wang C, Thompson R L, Baltrus J, Matranga C. J. Phys. Chem. Lett., 2010, 1: 48-53
[40] 增波(Zeng B). 西北大学硕士论文(Master Dissertation of Northwest University), 2008
[41] 赵志换(Zhao Z H), 范济民(Fan J M), 刘少华(Liu S H), 王志忠(Wang Z Z). 现代化工(Modern Chemical Industry), 2007, 27: 238-243
[42] 赵志换(Zhao Z H), 范济民(Fan J M), 王志忠(Wang Z Z). 应用化工(Applied Chemical Industry), 2005, 34: 632-634
[43] 赵志换(Zhao Z H), 范济民(Fan J M), 王志忠(Wang Z Z). 精细化工(Fine Chemicals), 2006, 23: 54-57
[44] Ozcan O, Yukruk F, Akkaya E U, Uner D. Appl. Catal. B, 2007, 71: 291-297
[45] Ozcan O, Yukruk F, Akkaya E U, Uner D. Top. Catal., 2007, 44: 523-528
[46] Heleg V, Willner I. J. Chem. Soc. Chem. Commun., 1994, 2113-2114
[47] Woolerton T W, Sherad S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132: 2132-2133
[1] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[2] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[3] Wang Sasa, Sun Hui, Chen Shengjie, You Hongxing, Liu Ye* . Applications of Transition Metallates in Catalysis [J]. Progress in Chemistry, 2012, 24(12): 2287-2298.
[4] Zhou Tianchen, He Chuan, Zhang Yanan, Zhao Guohua*. Photoelectrocatalytic Reduction of CO2 [J]. Progress in Chemistry, 2012, (10): 1897-1905.
[5] Wang Li, Ao Xianquan, Wang Shihan. Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas [J]. Progress in Chemistry, 2012, (9): 1696-1706.
[6] Li Mengli, Yang Xiaolong, Tang Liping, Xiong Xumao, Ren Sili, Hu Bin. Catalysts for Catalytic Decomposition of Nitrous Oxide [J]. Progress in Chemistry, 2012, (9): 1801-1817.
[7] Lu Xueyi, Liao Shijun, Song Huiyu. Highly Active and Highly Poison Tolerant Anodic Catalysts for Direct Formic Acid Fuel Cells [J]. Progress in Chemistry, 2012, 24(08): 1437-1446.
[8] Zhang Jun, Chen Jing, Huang Xinsong, Li Guangshe. Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation [J]. Progress in Chemistry, 2012, 24(07): 1245-1251.
[9] Yin Hailiang, Zhou Tongna, Chai Yongming, Liu Yunqi, Liu Chenguang. Application of Zeolites in Hydrodesulfurization Catalysts for Deep Desulfurization [J]. Progress in Chemistry, 2012, 24(07): 1252-1261.
[10] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[11] Niu Yingli, Lin Chinkai, Yang Ling, Yu Jianguo, He Rongxing, Pang Ran, Zhu Chaoyuan, Hayashi Michitoshi, Lin Sheng Hsien. Recent Developments in Radiationless Transitions [J]. Progress in Chemistry, 2012, 24(06): 928-949.
[12] Chen Zhaoxu, Huang Yucheng, He Xiang. Theoretical Study of the Mechanism of Methanol Steam Reforming over Pd/ZnO [J]. Progress in Chemistry, 2012, 24(06): 873-878.
[13] Liu Fudong, Shan Wenpo, Shi Xiaoyan, He Hong. Vanadium-Based Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2012, 24(04): 445-455.
[14] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[15] Wang Yujuan, Xu Jie, Yin Guochuan. Diversity of Active Intermediates in Homogeneous Catalytic Oxidations [J]. Progress in Chemistry, 2012, 24(0203): 203-211.