中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Development of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells

Zhang Huijing, Hou Xin   

  1. College of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 1546 ) Cited
Export

EndNote

Ris

BibTeX

Organic polymer/Inorganic semiconductor hybrid solar sell is a kind of solar sell which was prepared by a composite of organic conjugated polymer and inorganic semiconductor as the main raw material. The working mechanism of Organic polymer/Inorganic semiconductor hybrid solar sell was introduced in this paper. The influencing factors on the power conversion efficiency (PCE) of the hybrid solar cell, such as the choice of the conjugated polymer, the morphology of hetero-junction, the thickness of the photosensitive layer, the choice of the inorganic semiconductor and its modification, and annealing of the cell, were reviewed in detail. At last, the prospect of hybrid solar cell was also presented, more attention should be focused on the modification of available conjugated polymer or the synthesis of new conjugated polymers to improve the power conversion efficiency (PCE) of the hybrid solar cell in the future. Contents
1 Introduction
2 Working principle of hybrid solar cells
3 Development of hybrid solar cells
3.1 Choice of conjugated polymers
3.2 Morphology of heterojunction
3.3 Choice of inorganic semiconductors and their modification
3.4 Thickness of photosensitive layer
3.5 Annealing of hybrid solar cells
4 Outlook

CLC Number: 

[1] 林红(Lin H), 张永昌(Zhang Y C), 李鑫(Li X), 李建保(Li J B). 新材料产业(Advanced Materials Industry), 2011, 5: 33-39
[2] 曾望东(Zeng W D), 丁娉(Ding P), 潘春跃(Pan C Y). 广州化工(Guangzhou Chemical Industry and Technology), 2010, 28(7): 43-46
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Science, 2007, 317 (5835): 222-225
[4] Lin C, Pan X W, Zheng D X, Gao Y, Jiang X X, Xu M S, Chen H Z. Nanotechnology, 2010, 21: art. no. 345201
[5] Xu T T, Qiao Q Q. Energy Environ., 2011, 4: 2700-2720
[6] Zhou Y F, Michael E, Michael K. Energy & Environmental Science, 2010, 3: 1851-1864
[7] Brabec C J, Zerza G, Gerullo G, Silverstri S D, Luzati S, Hummelen J C, Sariciftci S. Chemical Physics Letters, 2001, 340: 232-236
[8] Zerza G, Scharber M C, Brabec C J, Sariciftci N S. J. Phys. Chem. A, 2000, 104: 8315-8322
[9] Piok T, Brands C, Neyman P J, Erlacher A, SomanM C, Murray A, Schroeder R, Graupner W, He J R, Marciu D, Drake A, Miller M B, Wang H, Gibson H, Dorn H C, Leising G, Guzy M, Davis R M. Synthetic Metals, 2001, 116: 343-347
[10] Durstock M F, Taylor B, Spry R J, Chiang L, Reulbach S, Heitfeld K, Baur J W. Synthetic Metals, 2001, 116: 373-377
[11] Munters T, Martens T, Goris L, Vrindts V, Manca J, Lutsen L, Ceuninck W D, Vanderzande D, Schepper L D, Gelan J, Sariciftci N S, Brabec C J. Thin Solid Films, 2002, 403/404: 247-251
[12] Durstock M F, Spry R J, Baur J W, Taylor B E, Chiang Z Y. J. Appl. Phys., 2003, 94(5): 3253-5259
[13] Breeze A J, Schlesinger Z, Carter S A. Physical Review B, 2001, 64 (125205): 1-9
[14] Ravirajan P, Bradley D D C, Nelsona J, Haque S A, Durrant J R, Smit H J P, Kroon J M. Applied Physics Letters, 2005, 86: art. no. 143101
[15] Beek W J E, Wienk M M, Janssen R A J. Adv. Mater., 2004, 16 (12): 1009-1013
[16] Inpor K, Meeyoo V, Chanchana T A. Current Applied Physics, 2001, 11 (1): s171-s174
[17] Deng D, Shi M, Chen F, Chen L, Jiang X X, Chen H Z. Solar Energy, 2010, 84: 771-776
[18] Jiang X X, Chen F, Xu H, Yang L G, Qiu W M, Shi M M, Wang M, Chen H Z. Solar Energy Materials & Solar Cells, 2010, 94: 338-344
[19] Wang Z J, Qu S C, Zeng X B, Liu J P, Tan F R, Bi Y, Wang Z G. Acta Materialia, 2010, 58: 4590-4595
[20] Pasquier A D, Unalan H E A, Kanwal A, Miller S, Chhowalla M. Applied Physics Letters, 2005, 87: art. no. 203511
[21] Rowell M W, Topinka M A, McGeheea M D, Prall H J, Dennler G, Sariciftci N S, Hu L B, Gruner G. Applied Physics Letters, 2006, 88: art. no. 233506
[22] Liu J S, Kadnikova E N, Liu Y X, McGehee M D, Frechet J M J. J. Am. Chem. Soc., 2004, 126: 9486-9487
[23] Roberson L B, Poggi M A, Kowalik J, Smestad G P, Bottomley L A, Tolbert L M. Coordination Chemistry Reviews, 2004, 248: 1491-1499
[24] James T, McLeskey J, Qiao Q Q. International Journal of Photoenergy, 2006, art. no. 20951
[25] Beek W J E, Wienk M M, Janssen R A J. Adv. Funct. Mater., 2006, 16: 1112-1116
[26] Olson D C, Piris J, Collins R T, Shaheen S E, Ginley D S. Thin Solid Films, 2006, 496: 26-29
[27] Guo T F, Georgi L P, Wen T C, Chin X G, Liou S H. Applied Physics, 2006, 45 (49): L1314-L1316
[28] Yu B Y, Tsai A, Tsai S P, Wong K T, Yang Y, Chu C W, Shyue J J. Nanotechnology, 2008, 19: art. no. 255202
[29] Hau S K, Lap Y H, Acton O, Seob B N, Hong M, Jen A K Y. Mater. Chem., 2008, 18: 5113-5119
[30] Sun J, Pal B N, Jung B J, Katz H E. Organic Electronics, 2009, 10: 1-7
[31] Oosterhout S D, Koster L J A, Bavel S S, Loos J, Stenzel O, Thiedmann R, Schmidt V, Campo B, Cleij T J, Lutzen L, Vanderzande D, Wienk M M, Janssen R A J. Adv. Energy Mater., 2011, 1: 90-96
[32] Lu S L, Zeng L, Wu T, Ren B F, Niu J F, Liu H Y, Zhao X L, Mao J W. Solar Energy, 2011, 85: 1967-1971
[33] Schierhorn M, Boettcher S W, Peet J H, Matioli E, Bazan G C, Stucky G D, Moskovits M. ACS Nano, 2010, 4 (10): 6132-6136
[34] Ren S Q, Zhao N, Crawford S C, Tambe M, Bulovi V, Gradecak S. Nano Lett., 2011, 11: 408-413
[35] Mahmoud W E. Appl. Phys., 2009, art. no. 42155502
[36] Ebrahim S, Soliman M, Tarek M, Fattah A. Electronic Materials, 2011, 40 (9): 2033-2041
[37] Vermaa D, Duttab V. Journal of Applied Physics, 2009, 105: art. no. 034904
[38] Qin Q, Tao J, Yang Y, Bao Z G. Transactions of Nanjing University of Aeronautics & Astronautics, 2010, 27 (4): 345-351
[39] Yohannes T, Zhang F, Svensson M, Hummelen J C, Andersson M R, Inganas O. Thin Solid Films, 2004, 449: 152-157
[40] Cho N S, Park J H, Lee S K, Lee J, Shim H K, Park M J, Hwang D H, Jung B J. Macromolecules, 2006, 39: 177-183
[41] Du C, Li C H, Li W W, Chen X, Bo Z S, Veit C, Ma Z F, Wuerfel U, Zhu H F, Hu W P, Zhang F L. Macromolecules, 2011, 44: 7617-7624
[42] Chen C P, Chan S H, Chao T C, Ting C, Ko B T. Chem. Soc, 2008, 130: 12828-12833
[43] Ravirajan P, Haque S A, Poplavskyy D, Durrant J R, Bradley D D C, Nelson J. Thin Solid Films, 2004, 451/452: 624-629
[44] Wang P, Abrusci A, Henry M, Wong P, Svensson M, Andersson M R, Greenham N C. Nano Letters, 2006, 6 (8): 1789-1793
[45] Jiang Z J, Yang W, Huang Z H, Xu J W. Synthetic Metals, 2009, 159: 2320-2322
[46] Yun D Q, Xia X Y, Zhang S, Bian Z Q, Liu R H, Huang C H. Chemical Phisics Letters, 2011, 516: 92-95
[47] Hames Y, Alpaslan Z H, Kösemen A, San S E, Yerli Y. Solar Energy, 2010, 84: 426-431
[48] Yodyingyong S P, Zhou X Y, Zhang Q F, Triampo D, Xi J T, Park K, Limketkai B J, Cao J H. J. Phys. Chem. C, 2010, 114: 21851-21855
[49] Kang Y, Park M G, Kim D H. Applied Physics Letters, 2005, 86: art. no. 113101
[50] Jiang X X, Chen F, Xu H, Yang L G, Qiu W M, Shi M M, Wang M, Chen H Z. Solar Energy Materials & Solar Cells, 2010, 94: 338-344
[51] Kajihara K, Kauzyyuki K, Soga N. Jpn. J. Appl. Phys., 1996, 35: 6110-6116
[52] Breeze A J, Schlesinger Z, Carter S A. Physical Review B, 2001, 64: art. no. 125205
[53] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Mooses D, Lederc M, Lee K, Heeger A J. Nature Photonics, 2009, 3 (5): 297-302
[54] Hau S K, Yip H L, Ma H, Jen A K Y. Appl. Phys. Lett., 2008, 93: art. no. 233304
[55] Yip H H L, Hau S K, Baek N S, Jen A K Y. Appl. Phys. Lett., 2008, 92: art. no. 193313
[56] Schierhorn M, Boettcher S W, Peet J H, Matioli E, Bazan G C, Stucky G D, Moskovits M. ACS Nano, 2010, 4 (10): 6132-6137
[57] 刘红梅(Liu H M), 覃东欢(Tan D H), 陶 洪(Tao H), 韩丽丽(Han L L), 陈军武(Chen J W). 纳米器件与技术(Nano Device and Technology), 2009, 6(1): 14-18
[58] Ren S Q, Chang L Y, Lim S K, Zhao J, Zhao N, Bulove V, Bawendi M, Gradecak S. Nano Lett., 2011, 11: 3998-4002
[59] Aeici E, Sariciftci N C, Meissner D. Adv. Mater., 2003, 12 (2): 165-171
[60] Arici E, Hoppe H, Schaffler F, Meissener D, Malik M A, Saricifci N S. Appl. Phys. A, 2004, 79: 59-64
[61] Bereznev S, Kois J, Golovtsov I, Pik A O, Mellikov E. Thin Solid Films, 2006, 511/512: 425-429
[62] Arici E, Hoppe H, Schaffler F, Meissner D, Malik M A, Sariciftci N S. Thin Solid Films, 2004, 451/452: 612-618
[63] Wang L D, Zhao D X, Su Z S, Li B H, Zhang Z Z, Shen D Z. J. Electrochemical Society, 2011, 158 (8): H804-H807
[64] Shao S Y, Liu F M, Fang G, Zhang B H, Xie Z Y, Wang L X. Organic Electronics, 2011, 12: 641-647
[65] Geng H W, Qu Q Y, Chen C, Wu H, Wang M T. Electronic Materials, 2010, 39 (1): 1-7
[66] Geng H W, Wang M T, Han S K, Peng R X. Solar Energy Materials & Solar Cells, 2010, 94: 547-553
[67] Geng H W, Guo Y, Peng R X, Han S H, Wang M T. Solar Energy Materials & Solar Cells, 2010, 94: 1293-1299
[68] Arenas M C, Mendoza N, Cortina H, Nicho M E, Hua H L. Solar Energy Materials & Solar Cells, 2010, 94: 29-33
[69] 肖红斌(Xiao H B). 大众科技(Popular Science), 2010, 7: 106-18
[70] Liao H C, Chantarat N, Chen S Y, Peng C H. J. Electrochemical Society, 2011, 158 (7): E67-E72
[71] Dkhil S B, Davenas J, Bourguiga R, Cornuc D. Synthetic Metals, 2011, 161: 1928-1933
[72] Gerein N G, Fleischauer M D, Brett M G. Solar Energy Materials & Solar Cells, 2010, 94: 2343-2350
[73] Wu Y, Zhang G Q. Nano Lett., 2010, 10: 1628-1631
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[3] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[4] Di Liu, Qian Liu, Yonggang Wang, Yongfa Zhu. Bi2SiO5 Semiconductor Photocatalyst [J]. Progress in Chemistry, 2018, 30(6): 703-709.
[5] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[6] Jianxi Kang, Shirong Wang, Mengna Sun, Hongli Liu, Xianggao Li. Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2017, 29(4): 400-411.
[7] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[8] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[9] Zhou Li, Deng Huiping, Zhang Wei. Research on Silver-Containing Visible-Light Photocatalysts [J]. Progress in Chemistry, 2015, 27(4): 349-360.
[10] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[11] Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*. The Application of DNA Biosensor Based on Conjugated Polymers [J]. Progress in Chemistry, 2015, 27(12): 1799-1807.
[12] Chen Yun, Shao Ya, Fan Lijuan. Fluorescent Color Tuning of Conjugated Polymer Materials: Mechanisms and Methods [J]. Progress in Chemistry, 2014, 26(11): 1801-1810.
[13] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.
[14] Chen Zhouqun, Ma Chang-Qi. Synthesis of Poly(3-Alkylthiophene)s [J]. Progress in Chemistry, 2013, 25(07): 1166-1176.
[15] Cai Xiaohui, Shi Lin, Liu Xingfen*, Huang Yanqin, Fan Quli, Huang Wei*. Functionalized Conjugated Polymers and Their Application in the Biological and/or Chemical Analysis [J]. Progress in Chemistry, 2013, 25(06): 975-989.