中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Kinetics of Gas-Phase Radical Reactions Using Photoionization Mass Spectrometry with Synchrotron Source

Chu Genbai, Chen Jun, Liu Fuyi, Sheng Liusi   

  1. National Synchrotron Radiation Laboratory, SNST, University of Science and Technology of China, Hefei 230029, China) Abstract Gas-phase radicals can react rapidly with various gaseous molecules, which play a vital role in catalyzing reactions in atmospheric, combustion and interstellar chemistry. A range of experimental techniques such as fluorescence and absorption spectrometry have been employed to study the reaction processes of gas-phase radicals and acquired some important results. Despite of the sufficient sensibility in the measurement of transient species, most of these techniques are limited to small radicals with small molecules, inaccessible to bigger radicals or multiplexed detection. Lately, a combination of flow reactor, flash laser photolysis and synchrotron radiation (SR) photoionization mass spectrometry (PIMS), serves as a universal, multiplexed, selective and sensitive method, ideal for the chemical kinetics study. Pulsed photolysis laser is used to initiate radical reaction, SR vacuum ultraviolet (VUV) light source to ionize the molecules emerging from the side pinepole and mass spectrometer to detect multiple species in the reactions (especially many-atom species
  • Received: Revised: Online: Published:
PDF ( 1036 ) Cited
Export

EndNote

Ris

BibTeX

Gas-phase radicals can react rapidly with various gaseous molecules, which play a vital role in catalyzing reactions in atmospheric, combustion and interstellar chemistry. A range of experimental techniques such as fluorescence and absorption spectrometry have been employed to study the reaction processes of gas-phase radicals and acquired some important results. Despite of the sufficient sensibility in the measurement of transient species, most of these techniques are limited to small radicals with small molecules, inaccessible to bigger radicals or multiplexed detection. Lately, a combination of flow reactor, flash laser photolysis and synchrotron radiation (SR) photoionization mass spectrometry (PIMS), serves as a universal, multiplexed, selective and sensitive method, ideal for the chemical kinetics study. Pulsed photolysis laser is used to initiate radical reaction, SR vacuum ultraviolet (VUV) light source to ionize the molecules emerging from the side pinepole and mass spectrometer to detect multiple species in the reactions (especially many-atom species). A plenty of original works such as the studies of CN, OH and alkylperoxy radical reactions have been done using double-focusing mass spectrometer or time-of-flight mass spectrometer and identified to be in fair agreement with the previous methods. Furthermore, the extra ordinary capability of time- and energy- resolution can be widely applicable in the kinetics study of some important radicals such as alkylperoxy and aromatic radicals in atmospheric, combustion,and interstellar chemistry. Contents
1 Introduction
2 Experimental techniques for radical kinetics
2.1 Absorption, fluorescence and infrared spectrum
2.2 Mass spectrometry (MS)
2.3 PIMS with flash laser photolysis and flow reactor
3 Application of PIMS
3.1 Cyano radical reactions
3.2 Alkylperoxy and alkenylperoxy radicals
3.3 OH radical reactions
3.4 Other radicals
4 Conclusion and outlook

CLC Number: 

[1] 丁国安(Ding G Z), 郑向东(Zheng X D), 马建中(Ma J Z), 刘煜(Liu Y), 颜鹏(Yan P).应用气象学报(Journal of Applied Meteorological Science), 2006, 17(6): 796-814
[2] Chyba C, Sagan C. Nature, 1992, 355: 125-132
[3] Miller S L. Science, 1953, 117: 528-529
[4] Bada J J, Lazcano A. Science, 2003, 300: 745-746
[5] Wennberg P O, Hanisco T F, Jaegle L, Jacob D J, Hintsa E J, Lanzendorf E J, Anderson J G, Gao R S, Keim E R, Donnelly S G, Del N L A, Fahey D W, McKeen S A, Salawitch R J, Webster C R, May R D, Herman R L, Proffitt M H, Margitan J J, Atlas E L, Schauffler S M, Flocke F, McElroy C T, Bui T P. Science, 1998, 279 (5347): 49-53
[6] Stahl F, Schleyer P V, Bettinger H F, Kaiser R I, Lee Y T, Schaefer H F. J. Chem. Phys., 2001, 114: 3476-3487
[7] Kaiser R I. The role of cyano (CN) and ethynyl (C2H) radicals in astrobiology and implications to the origin of life on earth (Eds. Ehrenfreund P, Angerer O, Battrick B). Frascati: Esa. Sp. Publ., 2001, 496: 145-153
[8] Carter W P L. Atmos. Environ. A General Topics, 1990, 24: 481-518
[9] Kaiser R I. Chem. Rev., 2002, 102: 1309-1358
[10] Tian Y W, Sun S H, Xie J P, Zong Y L, Nie C, Guo Y L. Chin. J. Chem., 2007, 25 (8): 1139 - 1144
[11] 孔繁敖(Kong F A), 董锋(Dong F). 化学物理学报(Chinese Journal of Chemical Physics), 2004, 17: 225-232
[12] 戴东旭(Dai D X), 杨学明(Yang X M). 化学进展(Progress in Chemistry), 2007, 19: 1633-1645
[13] 黄存顺(Huang C X), 李宗孝(Li Z X), 赵东锋(Zhao D F), 新瑶(Xin Y), 裴林森(Pei L S), 陈从香(Chen C X), 陈旸(Chen Y). 科学通报(Chinese Science Bulletin), 2004, 49 (2): 120-124
[14] Wei W M, Tan W, Zheng R H, He T J, Chen D M, Liu F C. Chem. Phys., 2005, 312: 241-259
[15] Xie H B, Shao C B, Ding Y H. Astrophys. J., 2007, 670 (1): 449-456
[16] Britton D, Davidson N, Gehman W, Schott G. J. Chem. Phys., 1956, 25: 804-810
[17] Palmer H B, Hornig D F. J. Chem. Phys., 1957, 26: 98-106
[18] 詹明生(Zhan M S), 周士康(Zhou S K), 邱元武(Qiu Y W), 刘颂豪(Liu S H), 史济良(Shi J L), 李方琳(Li F L), 姚介兴(Yao J X). 化学学报(Acta Chim. Sinica), 1986, 44 (11): 1149-1151
[19] Hu R Z, Zhang Q, Chen Y. J. Chem. Phys., 2010, 132: art. no. 164312
[20] Gannon K L, Glowacki D R, Blitz M A, Hughes K J, Pilling M J, Seakins P W. J. Phy. Chem. A, 2007, 111: 6679-6692
[21] Choi N, Blitz M A, McKee K, Pilling M J, Seakins P W. Chem. Phys. Lett., 2004, 384: 68-72
[22] Balucani N, Asvany O, Kaiser R I, Osamura Y. J. Phys. Chem. A, 2002, 106: 4301-4311
[23] Fockenberg C, Bernstein H J, Hall G E, Muckerman J T, Preses J M, Sears T J, Weston R E. Rev. Sci. Instrum., 1999, 70: 3259-3264
[24] Blitz M A, Goddard A, Ingham T, Phlling M J. Rev. Sci. Instrum., 2007, 78: 034103-034111
[25] Zhou S H, Chu G B, Cao L L, Shan X B, Liu F Y, Han J G, Sheng L S. Eur. J. Mass Spectrom., 2011, 17(4): 385-394
[26] Slagle I R, Yamada F, Gutman D. J. Am. Chem. Soc., 1981, 103: 149-153
[27] Slagle I R, Gutman D. J. Am. Chem. Soc., 1985, 107: 5342-5347
[28] Wang B S, Fockenberg C. J. Phys. Chem. A, 2001, 105: 8449-8455
[29] Wang B S, Hou H, Yoder L M, Muckerman J T, Fockenberg C. J. Phys. Chem. A, 2003, 107: 11414-11426
[30] Osborn D L, Zou P, Johnsen H, Hayden C C, Taatjes C A, Knyazev V D, North S W, Peterka D S, Ahmed M, Leone S R. Rev. Sci. Instrum., 2008, 79: 104103-104112
[31] Taatjes C A, Hansen N, Osborn D L, Hoinghaus K K, Cool T A, Westmoreland P R. Phys. Chem. Chem. Phys., 2008, 10: 20-34
[32] Welz O, Savee J D, Osborn D L, Vasu S S, Percival C J, Shallcross D E, Taatjes C A. Science, 2012, 335: 204-207
[33] Trevitt A J, Goulay F, Meloni G, Osborn D L, Taatjes C A, Leone S R. Int. J. Mass Spect., 2009, 280: 113-118
[34] Trevitt A J, Goulay F, Taatjes C A, Osborn D L, Leone S R. J. Phys. Chem. A, 2010, 114: 1749-1755
[35] Osborn D L, Meloni G, Zou P, Klippenstein S J, Ahmed M, Leone S R, Taatjes C A. J. Am. Chem. Soc., 2006, 128: 13559-13567
[36] Meloni G, Selby T M, Goulay F, Leone S R, Osborn D L, Taatjes C A. J. Am. Chem. Soc., 2007, 129: 14019-14025
[37] Meloni G, Selby T M, Osborn D L, Taatjes C A. J. Phys. Chem. A, 2008, 112: 13444-13451
[38] North S W, Greenwald E E, Ghosh B, Anderson K C, Dooley K S, Zou P, Selby T, Osborn D L, Meloni G, Taatjes C A, Goulay F. J. Phys. Chem. A, 2010, 114: 904-912
[39] Leone S R, Goulay F, Osborn D L, Taatjes C A, Zou P, Meloni G. Phys. Chem. Chem. Phys., 2007, 9: 4291-4300
[40] Soorkia S, Trevitt A J, Selby T M, Osborn D L, Taatjes C A, Wilson K R, Leone S R. J. Phys. Chem. A, 2010, 114: 3340-3354
[41] Selby T M, Meloni G, Goulay F, Leone S R, Fahr A, Taatjes C A, Osborn D L. J. Phys. Chem. A, 2008, 112: 9366-9373
[42] Goulay F, Trevitt A J, Meloni G, Selby T M, Osborn D L, Taatjes C A, Vereecken L, Leone S R. J. Am. Chem. Soc., 2009, 131: 993-1005
[43] Soorkia S, Liu C L, Savee J D, Ferrell S J, Leone S R, Wilson R. Rev. Sci. Instrum., 2011, 82: 124102-124109
[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[3] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[4] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[5] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[6] Jiang Binbo, Yuan Shiling, Chen Nan, Wang Haibo, Wang Jingdai, Huang Zhengliang. Reaction Kinetics of n-Butane Oxidation on VPO Catalyst [J]. Progress in Chemistry, 2015, 27(11): 1679-1688.
[7] Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping. Controlled Hydrogen Generation by Reaction of Aluminum with Water [J]. Progress in Chemistry, 2012, 24(04): 650-658.
[8] . Advances in the Anionic Ring Opening Polymerization Mechanism and Dynamics of Hexamethylcyclotrisiloxane(D3) [J]. Progress in Chemistry, 2010, 22(06): 1169-1176.
[9] . Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose [J]. Progress in Chemistry, 2010, 22(04): 654-662.
[10] Wang Yan Tao Zhanliang Chen Jun. Mg-Based Transition-Metal Complex Hydrides with 18-Electronic Structure [J]. Progress in Chemistry, 2010, 22(01): 234-240.
[11] Li Yuntao Zhong Qin. Recent Advances in Mechanisms and Kinetics of Low-Temperature Selective Catalytic Reduction of NOX with NH3 [J]. Progress in Chemistry, 2009, 21(6): 1094-1100.
[12] Liang Yan Wang Ping Dai Hongbin. Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution [J]. Progress in Chemistry, 2009, 21(10): 2219-2228.
[13] Li Yang Jiang Guoxiang Niu Junfeng** Wang Ying Hu Lijuan. Laccase-Catalyzed Oxidation of Organic Pollutants in Water [J]. Progress in Chemistry, 2009, 21(10): 2028-2036.
[14] Fang Zhanzhao Kang Xiangdong Wang Ping. Study of Hydrogen Storage Properties of Lithium Borohydride [J]. Progress in Chemistry, 2009, 21(10): 2212-2218.
[15] Ye Xiaochuan Yang Xiangliang Xu Huibi. Advance in Nanorealgar Studies [J]. Progress in Chemistry, 2009, 21(05): 934-939.