中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Theoretical Foundation and Limitation of Two-Step Anodizing Technology

Zhu Xufei1*, Han Hua2, Qi Weixing1, Lu Chao1, Jiang Longfei1, Duan Wenqiang2   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, China;
    2. National Engineering and Technology Research Center for ASIC Design, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2157 ) Cited
Export

EndNote

Ris

BibTeX

Two-step anodizing technology (TSAT) has been used widely in the assembling process of porous anodic alumina and porous anodic TiO2 nanotubes. However, the theoretical background and foundation of TSAT are still unclear because of the ambiguous interpretations about the pore generation. A detailed introduction to the origin and theoretical foundation of the TSAT and imprinting technology is presented. The unexplainable experiment phenomena in two-step anodizing process which traditional theories (e.g. the field-assisted dissolution or ejection) can not explain and the limitation and using conditions of the TSAT and imprinting technology are analyzed. The explanation for these conflicting phenomena reported in the published references is given via the oxygen bubbles model. The important effect of the oxygen bubbles mould and the viscous flow of barrier oxide on the formation of columnar and regular channels is emphasized. The electronic current, ionic current and oxygen bubble mould will play an important role in the structural modulation of porous anodic alumina and porous anodic titania nanotubes. The present views may be helpful to understand the mechanism of porous anodic titania and facilitate the assembling of diverse nanostructures for extensive application in photocatalysis and solar batteries. Contents
1 Introduction
2 Origin and theoretical background of two-step anodizing technology
3 Limitation and using conditions of imprinting technology
4 Unexplainable experiment phenomena in two-step anodizing process
5 Explanation for above conflicting phenomena through the model of oxygen bubbles
6 Conclusions

CLC Number: 

[1] Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U. Nat. Nanotechnol., 2008, 3: 234-239
[2] Li D D, Zhao L, Jiang C H, Lu J G. Nano Lett., 2010, 10: 2766-2771
[3] Platschek B, Keilbach A, Bein T. Adv. Mater., 2011, 23: 2395-2412
[4] Yao Z W, Zheng M J, Ma L, Shen W Z. Nanotechnology, 2008, 19: art. no. 465705
[5] Ding G Q, Shen W Z, Zheng M J, Zhou Z B. Nanotechnology, 2006, 17: art. no. 2590
[6] Zhao L L, Steinhart M, Gösele U, Schlecht S. Adv. Mater., 2008, 20: 1218-1221
[7] Mahima S, Kannan R, Komath I, Aslam M, Pillai V K. Chem. Mater., 2008, 20: 601-603
[8] Evans P R, Zhu X H, Baxter P, McMillen M, McPhillips J, Morrison F D, Scott J F, Pollard R J, Bowman R M, Gregg J M. Nano Lett., 2007, 7: 1134-1137
[9] Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y. Nano Lett., 2009, 9: 4297-4301
[10] Gu D, Baumgart H, Abdel-Fattah T M, Namkoong G. ACS Nano, 2010, 4: 753-758
[11] 叶秋梅(Ye Q M), 宋晔(Song Y), 刘鹏(Liu P), 胡隽隽(Hu J J). 化学进展(Progress in Chemistry), 2011, 23: 2617-2626
[12] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F). 化学进展(Progress in Chemistry), 2010, 22: 1035-1043
[13] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡为民(Cai W M), 廖俊生(Liao J S). 化学进展(Progress in Chemistry), 2007, 19: 117-122
[14] 李仕琦(Li S Q), 尹建波(Yin J B), 张耿民(Zhang G M). 中国科学: 化学 (Science-China Chemistry), 2010, 53: 1068-1073
[15] Lin J, Chen X F. Phys. Status Solidi-RRL, 2012, 6 (1): 28-30
[16] Zhao J L, Wang X H, Chen R Z, Li L T. Solid State Commun., 2005, 134: 705-710
[17] Jha H, Song Y Y, Yang M, Schmuki P. Electrochem. Commun., 2011, 13: 934-937
[18] Beranek R, Hildebrand H, Schmuki P. Electrochem. Solid State Lett., 2003, 6: B12-B14
[19] Cai Q Y, Paulose M, Varghese O K, Grimes C A. J. Mater. Res., 2005, 20 (1): 230-236
[20] Habazaki H, Oikawa Y, Fushimi K, Shimizu K, Nagata S, Skeldon P, Thompson G E. Electrochim. Acta, 2007, 53: 1775-1781
[21] Habazaki H, Teraoka M, Aoki Y, Skeldon P, Thompson G E. Electrochim. Acta, 2010, 55: 3939-3943
[22] Lee K, Kim D, Roy P, Paramasivam I, Birajdar B I, Spiecker E, Schmuki P. J. Am. Chem. Soc., 2010, 132: 1478-1480
[23] Lin J, Liu K, Chen X F. Small, 2011, 7: 1784-1789
[24] Wei W, Macak J M, Schmuki P. Electrochem. Commun., 2008, 10 (3): 428-432
[25] Tsuchiya H, Macak J M, Sieber I, Schmuki P. Small, 2005, 1: 722-725
[26] El-Sayed H, Singh S, Greiner M T, Kruse P. Nano Lett., 2006, 6: 2995-2998
[27] Allam N K, Feng X J, Grimes C A. Chem. Mater., 2008, 20: 6477-6481
[28] Tsuchiya H, Schmuki P. Electrochem. Commun., 2004, 6: 1131-1134
[29] Sulka G D, Brzózka A, Liu L F. Electrochim. Acta, 2011, 56: 4972-4979
[30] Josep P, Lluís F M. Adv. Mater., 2012, 24: 1050-1054
[31] Nicholas N B. J. Nanopart. Res., 2008, 10: 313-319
[32] Sulka G D, Parkoa K G. Electrochim. Acta, 2007, 52: 1880-1888
[33] Leitao D C, Sousa C T, Ventura J, Carpinteiro F, Correia J G, Amado M, Sousa J B, Araujo J P. Phys. Stat. Sol. C, 2008, 5: 3488-3491
[34] Zaraska L, Sulka G D, Szeremeta J, Jaskua M. Electrochim. Acta, 2010, 55: 4377-4386
[35] Tasaltn N, Öztürk S, Necmettin K, Yüzer H, Öztürk Z. Appl. Phys. A, 2009, 95: 781-787
[36] Han J K, Kim J, Choi Y C, Chang K S, Lee J, Youn H J, Bu S D. Physica E, 2007, 36: 140-146
[37] Zhao N Q, Jiang X X, Shi C S, Li J J, Zhao Z G, Du X W. J. Mater. Sci., 2007, 42: 3878-3882
[38] Li D D, Thompson R S, Bergmann G, Lu J G. Adv. Mater., 2008, 20: 1-4
[39] Kumar N, Varma G D, Nath R, Srivastava A K. Appl. Phys. A, 2011, 104: 1169-1174
[40] 高禄梅(Gao L M), 王胖胖(Wang P P), 吴小清(Wu X Q), 宋晓平(Song X P). 无机材料学报(J. Inorg. Mater. ), 2005, 20: 1417-1422
[41] 孙晓霞(Sun X X), 黄平(Huang P), 梁建(Liang J), 赵君芙(Zhao J F), 许并社(Xu B S). 无机化学学报(Chinese J. Inorg. Chem. ), 2008, 24: 1546-1550
[42] 吴志国(Wu Z G), 张鹏举(Zhang P J), 徐亮(Xu L), 李拴魁(Li S K), 王君(Wang J), 李旭东(Li X D), 闫鹏勋(Yan P X). 物理学报(Acta Phys. Sin. ), 2010, 59: 438-442
[43] Poinern G E J, Ali N, Fawcett D. Materials, 2011, 4: 487-526
[44] Losic D, Kant K. Phys. Status Solidi-RRL, 2009, 3(5): 139-144
[45] Lin J, Chen J F, Chen X F. Electrochem. Commun., 2010, 12: 1062-1065
[46] Wang D A, Liu Y, Yu B, Zhou F, Liu W M. Chem. Mater., 2009, 21: 1198-1206
[47] Ali G, Chen C, Yoo S H, Kum J M, Cho S O. Nanoscale Res. Lett., 2011, 6: art. no. 332
[48] Su Z X, Zhou W Z. J. Mater. Chem., 2011, 21: 8955-8970
[49] Ghicov A, Schmuki P. Chem. Commun., 2009, 2791–2808
[50] Xu X J, Fang X S, Zhai T Y, Zeng H B, Liu B D, Hu X Y, Bando Y, Golberg D. Small, 2011, 7: 445-449
[51] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 2904-2939
[52] O’Sullivan J P, Wood G C. Proc. R. Soc. Lond. A, 1970, 317: 511-543
[53] Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S. Nature, 1978, 272: 433-435
[54] Thompson G E, Wood G C. Nature, 1981, 290: 230-232
[55] Shimizu K, Kobayashi K, Thompson G E. Philos. Mag. A, 1992, 66: 643-646
[56] Parkhutik V P, Shershulsky V I. J. Phys. D: Appl. Phys., 1992, 25: 1258-1263
[57] Thompson G E. Thin Solid Films, 1997, 297: 192-201
[58] Jessensky O, Müller F, Gösele U. Appl. Phys. Lett., 1998, 72: 1173-1175
[59] Li F Y, Zhang L, Metzger R M. Chem. Mater., 1998, 10: 2470-2480
[60] Masuda H, Fukuda K. Science, 1995, 268: 1466-1468
[61] Masuda H, Nishio K, Baba N. J. Mater. Sci. Lett., 1994, 13: 338-340
[62] Masuda H, Satoh M. Jpn. J. Appl. Phys., 1996, 35: L126-L129
[63] Juang J Y, Bogy D B. Microsyst. Technol., 2005, 11: 950-957
[64] Masuda H, Hasegwa F, Ono S. J. Electrochem. Soc., 1997, 144: L127-L130
[65] Masuda H, Yada K, Osaka A. Jpn. J. Appl. Phys., 1998, 37: L1340-L1342
[66] Li A P, Muller F, Birner A, Nielsch K, Gosele U. J. Appl. Phys., 1998, 84: 6023-6026
[67] Patermarakis G, Moussoutzanis K. J. Electroanal. Chem., 2011, 659: 176-190
[68] Huang Q, Lye W K, Reed M L. Nanotechnology, 2007, 18: art. no. 405302
[69] Li D D, Jiang C H, Ren X, Long M, Jiang J H. Mater. Lett., 2008, 62: 3228-3231
[70] Xue C R, Zhang F, Chen S G, Yin Y S, Lin C. Mat. Sci. Semicon. Proc., 2011, 14: 157-163
[71] Liu R, Yang W D, Qiang L S, Wu J F. Thin Solid Films, 2011, 519: 6459-6466
[72] Bai J, Zhou B X, Li L H, Liu Y B, Zheng Q, Shao J H, Zhu X Y, Cai W M, Liao J S, Zou L X. J. Mater. Sci., 2008, 43: 1880-1884
[73] Li S Q, Zhang G M, Guo D Z, Yu L G, Zhang W. J. Phys. Chem. C, 2009, 113: 12759-12765
[74] Wang D A, Yu B, Wang C W, Zhou F, Liu W M. Adv. Mater., 2009, 21: 1964-1967
[75] Elsanousi A, Zhang J, Fadlalla H M, Zhang F, Wang H, Ding X, Huang Z X, Tang C. J. Mater. Sci., 2008, 43: 7219-7224
[76] Zhang F, Chen S G, Yin Y S, Lin C, Xue C R. J. Alloy. Compd., 2010, 490: 247-252
[77] Li H Y, Wang J S, Huang K L, Sun G S, Zhou M L. Mater. Lett., 2011, 65: 1188-1190
[78] Wang Y, Wu Y C, Qin Y Q, Xu G B, Hu X Y, Cui J W, Zheng H M, Hong Y, Zhang X Y. J. Alloy. Compd., 2011, 509: L157-L160
[79] Chen B, Lu K, Tian Z P. J. Mater. Chem., 2011, 21: 8835-8840
[80] Lee W, Scholz R, Gösele U. Nano Lett., 2008, 8: 2155-2160
[81] Patermarakis G, Moussoutzanis K. Electrochim. Acta, 2009, 54: 2434-2443
[82] Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E. Electrochem. Solid St., 2006, 9: B47-B51
[83] Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H. Electrochim. Acta, 2006, 52: 681-687
[84] Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E. Electrochim. Acta, 2010, 55: 3175-3184
[85] Houser J E, Hebert K R. Nature Mater., 2009, 8: 415-420
[86] Houser J E, Hebert K R. J. Electrochem. Soc., 2006, 153: B566-B573
[87] Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H. Corros. Sci., 2007, 49: 3772-3782
[88] Matykina E, Arrabal R, Skeldon P. Surf. Coat. Tech., 2010, 205: 1668-1678
[89] Coz F L, Arurault L, Datas L. Mater. Charact., 2010, 61: 283-288
[90] Yang S, Aoki Y, Skeldon P, Thompson G E, Habazaki H. J. Solid State Electrochem., 2011, 15: 689-696
[91] Oh J, Thompson C V. Electrochim. Acta, 2011, 56: 4044-4051
[92] Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H. J. Electrochem. Soc., 2001, 148: B152-B156
[93] Shingubara S, Murakami Y, Morimoto K, Takahagi T. Surf. Sci., 2003, 532/535: 317-323
[94] Robinson A P, Burnell G, Hu M, Macmanus-Driscoll J L. Appl. Phys. Lett., 2007, 91: 143-146
[95] Zavadil K R, Ohlhausen J A, Kotula P G. J. Electrochem. Soc., 2006, 153: B296-B303
[96] Masuda H, Abe A, Nakao M, Yokoo A, Tamamura T, Nishio K. Adv. Mater., 2003, 15: 161-164
[97] Zaraska L, Sulka G D, Szeremeta J, Jaskula M. Electrochim. Acta, 2010, 55: 4377-4386
[98] Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U. ACS Nano, 2008, 2: 302-310
[99] Chen W, Wu J S, Xia X H. ACS Nano, 2008, 2: 959-965
[100] Nielsch K, Choi J S, Schwirn K, Wehrspohn R B, Gösele U. Nano Lett., 2002, 2: 677-680
[101] Su Z X, Zhou W Z. Adv. Mater., 2008, 20: 3663-3667
[102] Su Z X, Bühl M, Zhou W Z. J. Am. Chem. Soc., 2009, 131: 8697-8702
[103] Su Z X, Zhou W Z. J. Mater. Chem., 2009, 19: 2301-2309
[104] Mozalev A, Magaino S, Imai H. Electrochim. Acta, 2001, 46: 2825-2834
[105] Li Y, Ling Z Y, Chen S S, Wang J C. Nanotechnology, 2008, 19: art. no. 225604
[106] Zhu Y Y, Ding G Q, Ding J N, Yuan N Y. Nanoscale Res. Lett., 2010, 5: 725-734
[107] Zaraska L, Sulka G D, Jaskula M. Surf. Coat. Tech., 2010, 204: 1729-1737
[108] Ren Y W, Zhang K S. Mater. Lett., 2009, 63: 1925-1927
[109] 李强(Li Q), 王凯歌(Wang K G), 党维军(Dang W J), 惠丹(Hui D), 任兆玉(Ren Z Y), 白晋涛(Bai J T). 物理学报(Acta Phys. Sin. ), 2010, 59: 5852-5857
[110] Ho A Y Y, Gao H, Lam Y C, Rodriguez I. Adv. Funct. Mater., 2008, 18: 2057-2063
[111] Krishnan R, Thompson C V. Adv. Mater., 2007, 19: 988-992
[112] Santos A, Ferre-Borrull J, Pallare J, Marsal L F. Phys. Status Solidi A, 2011, 208: 668-674
[113] Chen B, Lu K. Langmuir, 2011, 27: 12179-12185
[114] Kopp O, Lelonek M, Knoll M. Electrochim. Acta, 2011, 56: 8868-8872
[115] Proenca M P, Sousa C T, Leitao D C, Ventura J, Sousa J B, Araujo J P. Journal of Non-Crystalline Solids, 2008, 354: 5238-5240
[116] Zhu X F, Liu L, Song Y, Jia H, Yu H D, Xiao X, Yang X L. Monatsh. Chem., 2008, 139: 999-1003
[117] Zhu X F, Liu L, Song Y, Jia H, Yu H D, Xiao X, Yang X L. Mater. Lett., 2008, 62: 4038-4040
[118] Zhu X F, Song Y, Liu L, Wang C, Zheng J, Jia H, Wang X. Nanotechnology, 2009, 20: art. no. 475303
[119] Albella J M, Montero I, Martinez-Duart J M. Electrochim. Acta, 1987, 32: 255-258
[120] Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M. J. Electrochem. Soc., 1997, 144: 866-875
[121] Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J. Corros. Sci., 1999, 41: 1945-1954
[122] Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y. J. Mater. Chem., 2011, 21: 9661-9666
[123] Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y. Chem. Commun., 2011, 47: 2173-2175
[124] Chung C K, Zhou R X, Liu T Y, Chang W T. Nanotechnology, 2009, 20: art. no. 055301
[125] Ispas A, Bund A, Vrublevsky I. J. Solid State Electrochem., 2010, 14: 2121-2128
[126] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 段文强(Duan W Q). 物理化学学报(Acta Phys. -Chim. Sin. ), 2012, 28(6): 1291-1305
[1] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[2] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[3] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[4] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[5] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[6] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[7] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[8] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[9] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[10] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[11] Fang Qile, Chen Baoliang*. Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate [J]. Progress in Chemistry, 2012, (10): 2040-2053.
[12] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Lei Jinhua Wang Honghua Li Dongliang Zhou Guangyuan. Development of Two-Staged Seeded Swelling Polymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.