中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synthesis Gas Production by Chemical-Looping Reforming of Methane Using Lattice Oxygen

Huang Zhen, He Fang, Zhao Kun, Zheng Anqing, Li Haibin, Zhao Zengli   

  1. Key Laboratory of Renewable Energy and Gas Hydrate of Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received: Revised: Online: Published:
PDF ( 1239 ) Cited
Export

EndNote

Ris

BibTeX

Chemical looping reforming (CLR) of methane to obtain synthesis gas using lattice oxygen of oxygen carriers instead of molecular oxygen is a novel technology for producing synthesis gas from methane, which has higher economic benefits and environmental benign. CLR has several advantages, such as, saving oxygen generation equipment, capable of self-heating, suitable hydrogen/carbon ratio, useful by-products and realizing industrialization easily, so, it has been growing interest for researchers at home and aboard. Firstly, the basic concept and characteristics of CLR are introduced, which is partial oxidation of methane through controlling the value of lattice oxygen/fuel, thus, the synthesis gas is produced through the gas-solid reaction between methane and oxygen carriers, and the reduced oxygen carriers are re-oxidized by air or H2O to restore its lattice oxygen. Direct contact between fuel and combustion air is avoided in the CLR. Instead, an oxygen carrier performs the task of bringing O2 from the air to the fuel. In particular, it is summarized for the research progress of monometallic and composite metal oxygen carriers. And the same time, several kinds of typical representative reactor in CLR are discussed, among which interconnected fluidized bed reactor will be most effective for CLR to realize industrialization in the future. Finally, the expand application of CLR and the trends coupled with other technology are prospected. Contents 1 Introduction
2 Concept and characteristic of CLR
3 Oxygen carriers in CLR of methane
3.1 Monometallic oxygen carriers
3.2 Composite metal oxygen carriers
4 Reactor design in CLR of methane
5 Expand application of CLR and the trends coupled with other techniques
6 Conclusion

CLC Number: 

[1] 李景明(Li J M), 王红岩(Wang H Y), 赵群(Zhao Q). 天然气工业(Natural Gas Industry), 2008, 28(1): 149-153
[2] 国土资源部(Ministry of Land and Resources). 中国矿产资源报告2011(China Mineral Resources Report 2011). 北京: 国土资源部信息中心(Beijing: Information Center of Ministry of Land and Resources), 2011
[3] 冯孝庭(Feng X T). 天然气-宝贵的财富(Natural Gas-Valuable Asset). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004
[4] 许珊(Xu S), 王晓来(Wang X L), 赵睿(Zhao R). 化学进展(Progress in Chemistry), 2005, 15(2): 141-150
[5] 徐占林(Xu Z L), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 化学进展(Progress in Chemistry), 2000, 12(2): 121-130
[6] Gao J, Guo J Z, Liang D, Hou Z Y, Fei J H, Zheng X M. Int. J. Hydrogen Energy, 2008, 33: 5493-5500
[7] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. Journal of Catalysis, 2007, 250: 331-341
[8] Hou Z Y, Chen P, Fang H L, Zheng X M, Tatsuaki Y. Int. J. Hydrogen Energy, 2006, 31: 555-561
[9] Gao J, Hou Z Y, Liu X S, Zeng Y W, Luo M F, Zheng X M. Int. J. Hydrogen Energy, 2009, 34: 3734-3742
[10] Guo J Z, Gao J, Chen B H, Hou Z Y, Fei J H, Lou H, Zheng X M. Int. J. Hydrogen Energy, 2009, 34: 8905-8911
[11] 姜洪涛(Jiang H T), 李会泉(Li H Q), 张懿(Zhang Y). 化学进展(Progress in Chemistry), 2006, 18(10): 1270-1277
[12] 路勇(Lu Y), 沈师孔(Shen S K). 石油与天然气化工(Chemical Engineering of Oil & Gas), 1997, 26(1): 6-13
[13] 孙长庚(Sun C G), 刘宗章(Liu Z Z), 张敏华(Zhang M H). 化学工业与工程(Chemical Industry and Engineering), 2004, 21(4): 276-280
[14] Santos A, Menendz M, Santamaria J. Catal. Today, 1994, 21(2/3): 481-488
[15] Provendier H, Petit C, Estoums C, Libs S, Kiennemann A. Appl. Catal. A: General, 1999, 180(1/2): 163-173
[16] Elnqasides C, XenoPhon E V. J. Catal., 2001, 203: 477-486
[17] Wang H H, Cong Y, Yang W S. Chinese Science Bulletin, 2002, 47(7): 534-537
[18] 王海涛(Wang H T), 李振花(Li Z H), 田树勋(Tian S X), 何菲(He F). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2004, 32(4): 475-450
[19] Zhu Y R, Li Z H, Zhou Y H, Wang H T. Journal of Natural Gas Chemistry, 2005, 14(l): l-3
[20] Morioka H, ShimizuY, Sukenobu M, Ito K, Tanabe E, Shishido T, Takehira K. Appl. Catal. A: General, 2001, 215(1/2): 11-19
[21] 张兆斌(Zhang Z B), 余长春(Yu C C), 沈师孔(Shen S K). 石油大学学报(自然科学版) (Journal of China University of Petroleum(Edition of Natural Science)), 2002, 24(3): 22-25
[22] 金荣超(Jin R C), 陈燕馨(Chen Y X). 催化学报(Chinese Journal of Catalysis), 1999, 20(3): 267-272
[23] Fathi M, Hofstad H K, SPerie T, Rokstad O A, Holmen A. Catal. Today, 1998, 42: 205-209
[24] Shen S K, Pan Z Y, Dong C Y. Stud. Surf. Sci. Catal., 2001, 136: 99-140
[25] Ryden M, Lyngfelt A. Int. J. Hydrogen Energy, 2006, 31: 1271-1283
[26] Pimenidou P, Rickett G, Duponta V, Twigg M V. Bioresource Technology, 2010, 101(16): 6389-6397
[27] Johansson M, Mattisson T, Lyngfelt A, Abad A. Fuel, 2008, 87(6): 988-1001
[28] Zafar Q, Mattission T, Gevert B. Energy & Fuels, 2006, 20(1): 34-44
[29] Bolhar-Nordenkampf J, Proll T, Kolbitsch P, Hofbauer H. Energy Procedia, 2009, 1(1): 19-25
[30] Richter H J, Knoche K F, Gaggioli R A. Washington: ACS Symposium Series 235, 1983, 71-85
[31] He F, Wang H, Dai Y N. Journal of Natural Gas Chemistry, 2007, 16(2): 155-161
[32] Luis F, de Diego, Ortiz M, Garcia-Labiano F, Adanez J, Abad A, Gayan P. Energy Procedia, 2009, 1(1): 3-10
[33] 李孔斋(Li K Z). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2007
[34] 王保文(Wang B W). 华中科技大学博士论文(Doctoral Dissertation of Central China University Science and Technology), 2008
[35] Villa R, Cristiani C, Groppi G, Lietti L, Forzatti P, Cornaro U, Rossini S. Journal of Molecular Catalysis A: Chemical, 2003, 204/205: 637-646
[36] Adanez J, de Diego L F, Garcia-Labiano F, Gayan P, Abad A, Palacios M J. Energy & Fuels, 2004, 18(2): 371-377
[37] Ortiz M, Abad A, de Diego L F, García-Labiano F, Gayán P, Adánez J. Int. J. Hydrogen Energy, 2011, 36(16): 9663-9672
[38] Cho P, Mattisson T, Lyngfelt A. Fuel, 2004, 83(9): 1215-1225
[39] He F, Wei Y G, Li H B, Wang H. Energy & Fuels, 2009, 23(4): 2095-2102
[40] Readman J E, Olafsen A, Larring Y, Blom R. Journal of Materials Chemistry, 2005, 15(10): 1931-1937
[41] 秦翠娟(Qing C J), 沈来宏(Shen L H), 肖军(Xiao J), 高正平(Gao Z P). 锅炉技术(Boiler Technology), 2008, 39(5): 64-73
[42] Sedor K E, Hossain M M, de Lasa H I, Chemical Engineering Science, 2008, 63(11): 2994-3007
[43] Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Progress in Energy and Combustion Science, 2012, 38(2): 215-282
[44] Luis F, Garcia-Labiano F, Gayan P, Celaya J, Palacios J M, Adanez J. Fuel, 2007, 86(7/8): 1036-1045
[45] Mattisson T, Jardnas A, Lyngfelt A. Energy and Fuels, 2003, 17(3): 643-651
[46] Jin H, Okamoto T, Ishida M. Ind. Eng. Chem. Res., 1999, 38(1): 126-132
[47] Wolf J, Anhedenb M, Yan J. Fuel, 2006, 84(7/8): 993-1006
[48] Zafar Q, Mattisson T, Gevert B. Ind. Eng. Chem. Res., 2005, 44(10): 3485-3498
[49] Ryden M, Lyngfelt A, Mattisson T. Energy & Fuels, 2008, 22(4): 2585-2597
[50] Ryden M, Lyngfelt A, Mattisson T. Fuel, 2006, 85(12-13): 1631-1641
[51] de Diego L F, Ortiz M, Adanez J, Garcia-Labiano F. Chemical Engineering Journal, 2008, 144(2): 289-298
[52] de Diego L F, Ortiz M, Garcia-Labiano F, Adánez J, Abad A, Gayán P. Journal of Power Sources, 2009, 192(1): 27-34
[53] Son R S, Kang S G, Sang D K. Ind. Eng. Chem. Res., 2009, 48(1): 380-387
[54] Rahul D S, Veser G. Ind. Eng. Chem. Res., 2010, 49 (21): 11037-11044
[55] Go K S, Son S R, Sang D K, Kang K S, Park C S. Int. J. Hydrogen Energy, 2009, 34(3): 1301-1309
[56] Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V. Int. J. Hydrogen Energy, 2008, 33(9): 2233-2245
[57] Stobbe E R, de Boer B A, Geus J W. Catalysis Today, 1999, 47(1/4): 161-167
[58] Otsuka K, Sunada E, Ushiyama T. Stud. Surf. Sci. Catal., 1997, 107: 531-542
[59] Otsuka K, Wang Y, Sunada E, Yamanaka I. Journal of Catalysis, 1998, 175(2): 152-160
[60] Fathi M, Bjorgum E, Viig T. Catalysis Today, 2000, 63(2/4): 489-497
[61] 陈懿(Chen Y). 复旦大学学报(自然科学版) (Journal of Fudan University (Natural Science)), 2002, 41(3): 251-259
[62] Zhu X, Wang H, Wei Y G, Li K Z. Cheng X M. Journal of Rare Earths, 2010, 28(6): 907-913
[63] Otsuka K, Wang Y, Nakamura M. Appl. Catal. A, 1999, 183(2): 317-324
[64] Eguchi K, Arai H. Catalysis Today, 1996, 29(1/4): 379-386
[65] Mihai O, Chen D, Holmen A. Ind. Eng. Chem. Res., 2011, 50(5): 2613-2621
[66] 李然家(Li R J), 余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis ), 2002, 23(6): 549-554
[67] 李然家(Li R J), 余长春(Yu C C), 朱光荣(Zhu G R), 沈师孔(Shen S K), 张志翔(Zhang Z X). 石油与天然气化工(Chemical Engineering of Oil & Gas), 2004, 33(supply): 5-8
[68] Dai X P, Yu C C, Li R J, Wu Q, Shi K J, Hao Z P. Journal of Rare Earths, 2008, 26(3): 341-346
[69] Rydén M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjørgum E. International Journal of Greenhouse Gas Control, 2008, 2(1): 21-36
[70] Dai X P, Yu C C, Li R J, Wu Q. Journal of Natural Gas Chemistry, 2008, 17(4): 415-418
[71] Nalbanidian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2009, 34(17): 7162-7172
[72] Evdou A, Zaspalis V, Nalbanidian L. Int. J. Hydrogen Energy, 2008, 33(20): 5554-5562
[73] Evdou A, Zaspalis V, Nalbanidian L. Fuel, 2009, 89(6): 1265-1273
[74] Xie Y R, Xiao J, Shen L H, Wang J, Zhu J, Hao J G. Energy and Fuel, 2010, 24(5): 3256-3261
[75] Tian H, Guo Q, Yue X, Liu Y. Fuel Process Technology, 2010, 91(11): 1640-1649
[76] 李君(Li J). 华北电力大学硕士学位论文(Master Dissertation of North China Electric Power University, Beijing), 2009
[77] Lyngfelt A, Leckner B, Mattisson T. Chem. Eng. Science, 2001, 56(10): 3101-3113
[78] Pröll T, Bolhàr-Nordenkampf J, Kolbitsch P, Hofbauer H. Fuel, 2010, 89(6): 1249-1256
[79] Ortiz M, de Diego L F, Abad A, Garcia-Labiano F, Gayan P, Adanez J. Int. J. Hydrogen Energy, 2010, 35(1): 151-160
[80] He F, Huang Z, Li H B, Zhao Z L. Wuhan: APPEEC, 2011
[81] 黄振(Huang Z), 何方(He F), 李海滨(Li H B), 赵增立(Zhao Z L). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2012, 40(3): 300-308
[82] Acharya B, Dutta A, Basu P. Energy and Fuels, 2009, 23(10): 5077-5083
[83] Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y. Int. J. Hydrogen Energy, 1998, 23 (9): 767-774
[84] 李鑫( Li X), 李安定(Li A D), 李斌(Li B), 杨培尧(Yang P Y), 臧春城(Zang C C), 郑飞(Zheng F). 太阳能学报(Acta Energiae Solaris Sinica), 2005, 26(1): 127-133
[85] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20(9): 1306-1314
[86] 黄振(Huang Z), 何方(He F), 赵坤(Zhao K), 赵光杰(Zhao G J), 石化彪(Shi H B), 李海滨(Li H B). 农业工程学报(Transactions of the Chinese Society of Agricultural Engineering), 2011, 27(13): 105-111
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[3] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[4] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[5] Wanru Zhao, Xin Hu, Ning Zhu, Zheng Fang, Kai Guo. Ionic Polymerizations in Continuous Flow [J]. Progress in Chemistry, 2018, 30(9): 1330-1340.
[6] Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang. The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment [J]. Progress in Chemistry, 2017, 29(9): 1030-1041.
[7] Liu Huanjun, Gao Tengfei, Shi Da, Liu Jian, Ji Shengfu. Bifunctional Catalysts of Methanol Catalytic Conversion to Dimethoxymethane and Methyl Formate [J]. Progress in Chemistry, 2016, 28(6): 942-953.
[8] Gong Wanjun, Zhao Zhiyong, Liu Simin*. Cucurbituril-Based Supramolecular Nanoreactors/Catalysts [J]. Progress in Chemistry, 2016, 28(12): 1732-1742.
[9] Guo Yan, Peng Bo, Zhang Chunyu, Zhang Xuequan. Morphology of Polypropylene in-Reactor Alloys [J]. Progress in Chemistry, 2015, 27(12): 1815-1821.
[10] Jia Sisi, Chao Jie, Fan Chunhai, Liu Huajie. DNA Origami Nanoreactors [J]. Progress in Chemistry, 2014, 26(05): 695-705.
[11] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[12] Jiang Hongtao*, Hua Wei, Ji Jianbing. Study of Coke Deposition on Ni Catalysts for Methane Reforming to Syngas [J]. Progress in Chemistry, 2013, 25(05): 859-868.
[13] Wang Li, Ao Xianquan, Wang Shihan. Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas [J]. Progress in Chemistry, 2012, (9): 1696-1706.
[14] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[15] Gu Zhongmao, Chai Zhifang. Some Thinking of Nuclear Fuel Reprocessing/Recycling in China [J]. Progress in Chemistry, 2011, 23(7): 1263-1271.