中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials

Zhou Ying*1,2, Lin Yuanhua1,2, Greta R. Patzke3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China;
    3. Institute of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
  • Received: Revised: Online: Published:
PDF ( 915 ) Cited
Export

EndNote

Ris

BibTeX

Controlled synthesis of oxide nanomaterials is indispensable to enhance their applications. Recently, hydrothermal methods have been widely applied to synthesize oxide nanomaterials. However, hydrothemal reactions are performed in closed reactor systems. Therefore, it is extremely difficult to investigate the dissolution of precursor, the coordination environment of precursor in solution, nucleation and crystallization process, and the involved intermediates. This is the reason that targeted synthesis of oxide nanomaterials has not been achieved. Synchrotron radiation offers notable analytical advantages for structure elucidation, such as high intensity, high brightness, high collimation and wide tunability in energy/wavelength. Based on the design and construction of specialized in situ reactors, synchrotron radiation can be used to investigate the hydrothermal formation process of oxide nanomaterials. In this paper, the design principle of a hydrothermal in situ reactor is introduced. Moreover, the applications of in situ synchrotron X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and small-angle X-ray scattering (SAXS) to understand the hydrothermal formation mechanisms and reaction kinetics of oxide nanomaterials are critically reviewed. Furthermore, future trends of in situ techniques based on synchrotron radiation are discussed. Contents 1 Introduction
2 Design of in situ cell
3 Applications of synchrotron radiation
3.1 In situ X-ray diffraction
3.2 In situ X-ray absorption spectroscopy
3.3 In situ small angle X-ray scattering
4 Conclusion and outlook

CLC Number: 

[1] 施尔畏(Shi E W), 夏长泰(Xia C T), 王步国(Wang B G), 仲维卓(Zhong W Z). 无机材料学报(Journal of Inorganic Materials), 1996, 11(2): 193-206
[2] Byrappa K, Adschiri T. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166
[3] 施尔畏(Shi E W), 陈之战(Chen Z Z), 元如林(Yuan R L), 郑燕青(Zheng Y Q). 水热结晶学(Hydrothermal Crystallography). 北京: 科学出版社(Beijing: Science Press), 2004. 36-67
[4] Yao W T, Yu S H. Int. J. Nanotechnology, 2007, 4: 129-162
[5] Wang X, Li Y D. Pure Appl. Chem., 2006, 78: 45-64
[6] Patzke G R, Zhou Y, Kontic R, Conrad F. Angew. Chem. Int. Ed., 2011, 50: 826-859
[7] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285-2302
[8] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22: E28-E62
[9] Byrappa K, Yoshimura M. Hydrothermal Technology A Technology for Crystal Growth and Materials Processing. USA: William Andrew Publishing, 2001. 170-192
[10] Walton R I, O'Hare D. Chem. Commun., 2000, 2283-2291
[11] 刘勇(Liu Y), 周永丰(Zhou Y F), 颜德岳(Yan D Y). 化学进展(Progress in Chemistry), 2010, 22(6): 1177-1184
[12] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2008, 20(11): 1768-1778
[13] 马礼敦(Ma L D), 杨福家(Yang F J). 同步辐射应用概论(Introduction to Synchrotron Radiation Applications). 上海: 复旦大学出版社(Shanghai: Fudan University Press), 2005. 260-262
[14] Jacques S D M, Leynaud O, Strusevich D, Stukas P, Barnes P, Sankar G, Sheehy M, O'Brien M G, Iglesias-Juez A, Beale A M. Catal. Today, 2009, 145: 204-212
[15] Norby P, Christensen A N, Hanson J C. Stud. Surf. Sci. Catal., 1994, 84: 179-186
[16] Becker J, Bremholm M, Tyrsted C, Pauw B, Jensen K M, Eltzholt J, Christensen M, Iversen B B. J. Appl. Cryst., 2010, 43: 729-736
[17] Grunwaldt J D, Caravati M, Hannemann S, Baiker A. Phys. Chem. Chem. Phys., 2004, 6: 3037-3047
[18] Grunwaldt J D, van Vegten N, Baiker A. Chem. Commun., 2007, 4635-4637
[19] Grunwaldt J D, Ramin M, Rohr M, Michailovski A, Patzke G R, Baiker A. Rev. Sci. Instrum., 2005, 76: art. no. 054104
[20] Puxley D C, Squire G D, Bates D R. J. Appl. Crystallogr., 1994, 27: 585-594
[21] Rathousky J, Schulz-Ekloff G, Zukal H J. Phys. Chem. Chem Phys., 1999, 1: 3053-3057
[22] Evans J S O, Evans I R. Chem. Soc. Rev., 2004, 33: 539-547
[23] Walton R I, Norquist A, Smith R I, O'Hare D. Faraday Discuss., 2002, 122: 331-341
[24] Shen X F, Ding Y S, Hanson J C, Aindow M, Suib S L. J. Am. Chem. Soc., 2006, 128: 4570-4571
[25] Gao T, Fjellvåg H, Norby P. Nanotechnology, 2009, 20: art. no. 055610
[26] Bremholm M, Becker-Christensen J, Iversen B. Adv. Mater., 2009, 21: 3572-3575
[27] Jensen H, Bremholm M, Nielsen R P, Joensen K D, Pedersen J S, Birkedal H, Chen Y S, Almer J, Søgaard E G, Iversen S B, Iversen B B. Angew. Chem. Int. Ed., 2007, 46: 1113-1116
[28] Evans J S O, Francis R J, O'Hare D, Price S J, Clarke S M, Flaherty J, Gordon J, Nield A, Tang C C. Rev. Sci. Instrum., 1995, 66: 2442-2445
[29] Francis R J, Price S J, Evans J S O, O'Brien S, O'Hare D, Clark S M. Chem. Mater., 1996, 8: 2102-2108
[30] Francis R J, O'Brien S, Fogg A M, Halasyamani P S, O'Hare D, Loiseau T, Férey G. J. Am. Chem. Soc., 1999, 121: 1002-1015
[31] Rehan M, Lai X J, Kale G M. CrystEngComm, 2011, 13: 3725-3732
[32] Engelke L, Schaefer M, Schur M, Bensch W. Chem. Mater., 2001, 13: 1383-1390
[33] Michailovski A, Grunwaldt J D, Baiker A, Kiebach R, Bensch W, Patzke G R. Angew. Chem. Int. Ed., 2005, 44: 5643-5647
[34] Kiebach R, Pienack N, Bensch W, Grunwaldt J D, Michailovski A, Baiker A, Fox T, Zhou Y, Patzke G R. Chem. Mater., 2008, 20: 3022-3033
[35] Michailovski A, Kiebach R, Bensch W, Grunwaldt J D, Baiker A, Komarneni S, Patzke G R. Chem. Mater., 2007, 19: 185-197
[36] Zhou Y, Pienack N, Bensch W, Patzke G R. Small, 2009, 5: 1978-1983
[37] Zhou Y, Antonova E, Bensch W, Patzke G R. Nanoscale, 2010, 2: 2412-2417
[38] Zhou Y, Vuille K, Heel A, Patzke G R. Z. Anorg. Allg. Chem., 2009, 635: 1848-1855
[39] Zheng K B, Zhou Y, Gu L L, Mo X L, Patzke G R, Chen G R. Sens. Actuators B, 2010, 148: 240-246
[40] Zhou Y, Antonova E, Lin Y H, Grunwaldt J D, Bensch W, Patzke G R. Eur. J. Inorg. Chem., 2012, 783-789
[41] Walton R I, Munn A S, Guillou N, Millange F. Chem. Eur. J., 2011, 17: 7069-7079
[42] Millange F, Serre C, Guillou N, Ferey G, Walton R I. Angew. Chem. Int. Ed., 2008, 47: 4100-4105
[43] Millange F, Medina M I, Guillou N, Ferey G, Golden K M, Walton R I. Angew. Chem. Int. Ed., 2010, 49: 763-766
[44] 曲颖(Qu Y), 李玉锋(Li Y F), 陈春英(Chen C Y). 化学进展(Progress in Chemistry), 2011, 23(7): 1534-1546
[45] Newton M A, Dent A J, Evans J. Chem. Soc. Rev., 2002, 31: 83-95
[46] Rehr J J, Albers R C. Rev. Mod. Phys., 2000, 72: 621-654
[47] Kongmark C, Martis V, Rubbens A, Pirovano C, Lofberg A, Sankar G, Bordes-Richard E, Vannier R N, van Beek W. Chem. Commun., 2009, 4850-4852
[48] Jeong E S, Han S W, Vayssieres L. 2nd IEEE International Nanoelectronics Conference. Shanghai: IEEE, 2008, 1/3: 1099-1101
[49] Patzke G R, Michailovski A, Krumeich F, Nesper R, Grunwaldt J D, Baiker A. Chem. Mater., 2004, 16: 1126-1134
[50] Zhou Y, Grunwaldt J D, Krumeich F, Zheng K B, Chen G R, Stötzel J, Frahm R, Patzke G R. Small, 2010, 6: 1173-1179
[51] Zhou Y, Patzke G R. CrystEngComm, 2012, 14: 1161-1163
[52] 朱育评(Zhu Y P). 小角X射线散射: 理论、测试、计算及应用(Small Angle X-ray Scattering: Theory, Measurement, Calculation and Applications). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 1-8
[53] Rao C N R, Biswas K. Annu. Rev. Anal. Chem., 2009, 2: 435-462
[54] Biswas K, Varghese N, Rao C N R. J. Mater. Sci. Technol., 2008, 24: 615-627
[55] Biswas K, Das B, Rao C N R. J. Phys. Chem. C, 2008, 112: 2404-2411
[56] Viswanatha R, Amenitsch H, Sarma D D. J. Am. Chem. Soc., 2006, 129: 4470-4475
[57] Beale A M, van der Eerden A M J, Jacques S D M, Leynaud O, O'Brien M G, Meneau F, Nikitenko S, Bras W, Weckhuysen B M. J. Am. Chem. Soc., 2006, 128: 12386-12387
[58] Bremholm M, Felicissimo M, Iversen B B. Angew. Chem. Int. Ed., 2009, 48: 4788-4791
[59] Fan F, Feng Z, Li C. Acc. Chem. Res., 2010, 43: 378-387
[60] Garnweitner G, Grote C. Phys. Chem. Chem. Phys., 2009, 11: 3767-3774
[61] Viswanatha R, Santra P K, Dasgupta C, Sarma D D. Phys. Rev. Lett., 2007, 98: art. no. 255501
[62] Lizandara-Pueyo C, van den Berg M W E, De Toni A, Goes T, Polarz S. J. Am. Chem. Soc., 2008, 130: 16601-16610
[1] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[2] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[3] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[4] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[5] Chen Yanping, Cheng Dangguo, Chen Fengqiu, Zhan Xiaoli. Selective Catalytic Reduction of NOx by Hydrocarbons over Copper-Free Metal Supported Zeolite [J]. Progress in Chemistry, 2013, 25(12): 2011-2019.
[6] Tian Yu, Zhu Caizhen, Gong Jinghua, Ma Jinghong, Yang Shuguang, Xu Jian. In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers [J]. Progress in Chemistry, 2013, 25(10): 1751-1762.
[7] Qu Ying, Li Yufeng, Chen Chunying. Synchrotron Radiation and Related Nuclear Analytical Techniques for the Study on Biological Effects of Nanomaterials [J]. Progress in Chemistry, 2011, 23(7): 1534-1546.
[8] . Application of Synchrotron Radiation in Supramolecule Self-assembly [J]. Progress in Chemistry, 2010, 22(06): 1177-1184.
[9] . Conversion of Ethanol into Light Olefins over ZSM-5 Catalysts [J]. Progress in Chemistry, 2010, 22(04): 754-759.
[10] Tao Zhanliang Chen Jun. MAlH4(M=Li,Na ) Materials for Hydrogen Storage [J]. Progress in Chemistry, 2009, 21(09): 1945-1953.
[11] Jiaping Yan. Application of Synchrotron FTIR Techniques in Biomedical Fields [J]. Progress in Chemistry, 2008, 20(11): 1768-1778.
[12] Li Xin|Zhang Weiping**|Li Xiujie|Liu Shenglin. Heterogeneous Catalysts for Olefin Cross-Metathesis [J]. Progress in Chemistry, 2008, 20(0708): 1021-1031.
[13] Sheng Liusi,Yu Shuqin,Ng Cheukyiu. High Resolution Pulsed Field Ionization Photoelectron Spectroscopy [J]. Progress in Chemistry, 1999, 11(02): 153-.