中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Improvement of Lower Detection Limit of Ion-Selective Electrodes Based on PVC Membrane

Huang Meirong, Ding Yongbo, Li Xingui   

  1. Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, College of Materials Science and Engineering, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1140 ) Cited
Export

EndNote

Ris

BibTeX

Ion-selective electrodes (ISEs) based on polymeric membranes are characterized by small size, portability, low-energy consumption, and low cost, which are attractive features concerning practical applications. However, the lower detection limit is biased by the ion flux through PVC membrane, which limits the further development of ion-selective electrode. Therefore, the principles and attractive strategies to suppress such an ion flux to improve the lower detection limit of PVC membrane-based ion-selective electrodes are elaborated in this article. According to large amounts of data collected, the improvement of the detection limit via optimization of sensing membrane composition, electrode assembly and conditioning, electrode rotation, as well as current-polarized treatment, is quantitatively discussed. Furthermore, the modification regulations for expanding the lower detection limit are systematically summarized. The significant superiority and problems are analyzed. It is pointed out that we have to break the conventional PVC composition formulation via reducing the dosages of plasticizer and ion exchanger in order to largely depress the transmembrane ion flux. External-current application to the electrode is also an effective approach, among which, the best improvement for the lower detection limit can reach up to 5 orders of magnitude. This review reveals the future direction for developing the PVC membrane-based ion-selective electrodes with high performance. Contents 1 Introduction
2 Composition optimization of sensing membrane
2.1 Dosage decrease of plasticizer
2.2 Dosage optimization of ionophore
2.3 Dosage decrease of ion exchanger
2.4 Incorporation of lipophilic silica gel microparticle
3 Thickness increase of sensing membrane
4 Optimization of condition solution
5 Agitating sample solution or rotating electrode
6 Application of external current
7 Conclusion and outlook

CLC Number: 

[1] Huang M R, Ma X L, Li X G. Chin. Sci. Bull., 2008, 53(21): 3255-3266
[2] Huang M R, Rao X W, Li X G. Chin. J. Anal. Chem., 2008, 36(12): 1735-1741
[3] Ion I, Culetu A, Costa J, Luca C, Ion A C. Desalination, 2010, 259 (1/3): 38-43
[4] Szigeti Z, Malon A, Vigassy T, Csokai V, Grün A, Wygladacz K, Ye N, Xu C, Chebny V J, Bitter I, Rathore R, Bakker E, Pretsch E. Anal. Chim. Acta, 2006, 572(1): 1-10
[5] Bedlechowicz I, Maj-Zurawska M, Sokalski T, Hulanicki A. J. Electroanal. Chem., 2002, 537(1/2): 111-118
[6] 张军(Zhang J), 赵月前(Zhao Y Q), 丁家旺(Ding J W), 秦伟(Qing W). 分析测试学报(J. Instrumental Anal. ), 2011, 30(2): 207-212
[7] Mahajan R K, Sood P. Int. J. Electrochem. Sci., 2007, 2: 832-847
[8] Ceresa A, Sokalski T, Pretsch E. J. Electroanal. Chem., 2001, 501(1/2): 70-76
[9] Li X G, Ma X L, Huang M R. Talanta, 2009, 78(2): 498-505
[10] Mashhadizadeh M H. Taheri E P, Sheikhshoaie I. Talanta, 2007, 72 (3): 1088-1092
[11] 吕鉴泉(Lv J Q), 曾宪顺(Zeng X S), 艾娟(Ai J), 庞代文(Pang D W). 高等学校化学学报(Chem. J. Chin. Univ. ), 2005, 26(2): 238-240
[12] 薛富(Xue F), 李民君(Li M J), 季玉祥(Ji Y X), 张军(Zhang J). 化学试剂, 2011, 33(9): 837-840
[13] Wilson D, Arada M A, Alegret S, Valle M. J. Hazard. Mater., 2010, 181(1/3): 140-146
[14] Bochenska M, Guzinski M, Kulesza J. Electroanalysis, 2009, 21 (17/18): 2054-2060
[15] Long R, Bakker E. Anal. Chim. Acta, 2004, 511 (1): 91-95
[16] Arvand M, Asadollahzadeh S A. Talanta, 2008, 75(4): 1046-1054
[17] Zanjanchi M A, Arvand M, Islamnezhad A, Mahmoodi N O. Talanta, 2007, 74 (1): 125-131
[18] Ganjali M R, Hosseini M, Basiripour F, Javanbakht M, Hashemi O R, Rastegar M F, Shamsipur M, Buchanen G W. Anal. Chim. Acta, 2002, 464(2): 181-186
[19] Huang M R, Rao X W, Li X G, Ding Y B. Talanta, 2011, 85(3): 1575-1584
[20] Alizadeh N, Ershad S, Naeimi H, Sharghi H, Shamsipur M. Fresenius J. Anal. Chem., 1999, 365 (6): 511-515
[21] 李光华(Li G H), 丁国华(Ding G H). 化学通报(Chem. Bull. ), 2011, 74(9): 853-856
[22] Elmosallamy M A F, Fathy A M, Ghoneim A K. Electroanalysis, 2008, 20(11): 1241-1245
[23] Kazemia S Y, Shamsipur M, Sharghi H. J. Hazard. Mater., 2009, 172(1): 68-73
[24] Rizk N M H, Abbas S S, Hamza S M, EL-Karem Y M A. Sensors, 2009, 9(3): 1860-1875
[25] Mittal S K, Kumar A, Gupta N, Kaur S, Kumar S. Anal. Chim. Acta, 2007, 585(1): 161-170
[26] Bakker E, Pretsch E. Anal. Chim. Acta, 1995, 309(1/3): 7-17
[27] Zwickl T, Sokalski T, Pretsch E. Electroanalysis, 1999, 11 (10/11): 673-680
[28] Radu A, Peper S, Bakker E, Diamond D. Electroanalysis, 2007, 19(2/3): 144-154
[29] Telting-Diaz M, Bakker E. Anal. Chem., 2001, 73 (22): 5582-5589
[30] Sokalski T, Bedlechowicz I, Maj-Zurawska M, Hulanicki A. Fresenius J. Anal. Chem., 2001, 370 (4): 367-370
[31] 颜振宁(Yan Z N), 李利勤(Li L Q), 赵邦屯(Zhao B T). 分析化学(Chin. J. Anal. Chem. ), 2008, 36 (3): 339-342
[32] Bakker E, Buhlmann P, Pretsch E. Chem. Rev., 1997, 97 (8): 3083-3132
[33] Peper S, Qin Y, Almond P, McKee M, Telting-Diaz M, Albrecht-Schmitt T, Bakker E. Anal. Chem., 2003, 75 (9): 2131-2139
[34] Vigassy T, Gyurcsányi R E, Pretsch E. Electroanalysis, 2003, 15(5/6): 375-382
[35] Thurer R, Vigassy T, Hirayama M, Pretsch E. Chem. Anal., 2006, 51 (6): 869-878
[36] Michalska A, Ocypa M, Maksymiuk K. Electroanalysis, 2005, 17(4): 327-333
[37] Lindner E, Gyurcsányi R E, Buck R P. Electroanalysis, 1999, 11(10/11): 695-702
[38] Radu A, Telting-Diaz M, Bakker E. Anal. Chem., 2003, 75 (24): 6922-6931
[39] Vigassy T, Gyurcsányi R E, Pretsch E. Electroanalysis, 2003, 15 (15/16): 1270-1275
[40] Pergel E, Gyurcsányi R E, Tóth K, Lindner E. Anal. Chem., 2001, 73(17): 4249-4253
[41] Peshkova M A, Mikhel'son K N. Russ. J. Electrochem., 2010, 46 (11): 1331-1337
[42] Bedlechowicz I, Sokalski T, Lewenstam A, Maj-zurawska M. Sensors and Actuators B, 2005, 108 (1/2): 836-839
[43] Peshkova M A, Sokalski T, Mikhelson K N, Lewenstam A. Anal. Chem., 2008, 80 (23): 9181-9187
[44] Hofler L, Bedlechowicz I, Vigassy T, Gyurcsnyi R E, Bakker E, Pretsch E. Anal. Chem., 2009, 81 (9): 3592-3599
[45] Michalska A. Electroanalysis, 2005, 17(5/6): 400-407
[46] Pawowski P, Kisiel A, Michalska A, Maksymiuk K. Talanta, 2011, 84(3): 814-819
[47] Pawlowski P, Michalska A, Maksymiuk K. Electroanalysis, 2006, 18(13/14): 1339-1346
[48] Zook J M, Lindner E. Anal. Chem., 2009, 81 (13): 5146-5154
[49] Zook J M, Lindner E. Anal. Chem., 2009, 81 (13): 5155-5164
[50] Ding J W, Qin W. J. Am. Chem. Soc., 2009, 131 (41): 14640-14641
[51] Li X G, Feng H, Huang M R, Gu G L, Moloney M G. Anal. Chem., 2012, 84(1): 134-140
[52] Coldur F, Andac M, Isildak I, Saka T. J. Electroanal. Chem., 2009, 626(1/2): 30-35
[53] Huang M R, Gu G L, Shi F Y, Li X G. Chin. J. Anal. Chem., 2012, 40(1): 50-58
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[4] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[10] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[11] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[12] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[13] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[14] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.