中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Fluorescent Sensors Based on Graphene Oxide

Zhang Hao1, Cui Hua2   

  1. 1. Laboratory on Steam Power System, Wuhan Secondary Ship Design & Research Institute, Wuhan 430064, China;
    2. CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
PDF ( 1825 ) Cited
Export

EndNote

Ris

BibTeX

Graphene oxide has great application prospect in many fields due to its unique optical, high surface area, exceptional electronic, thermal and mechanical properties. Taking advantage of the property that graphene oxide can effectively quench the fluorescence of fluorophor including dye, quantum dot and upconversion nanophosphors and various bioanalytical technology, many fluorescent sensors have been developed. In this review, we summarized the principle of fluorescent sensors based on graphene oxide and their application in heavy metallic ion, DNA, protein and small bio-molecule. Moreover, the trends and future perspectives in this research area are also briefly discussed. Contents 1 Introduction
2 Structural characteristic of graphene oxide
3 Application of graphene oxide in fluorescent sensors
3.1 Metal ion fluorescent sensors
3.2 DNA fluorescent sensors
3.3 Protein fluorescent sensors
3.4 Bio-species fluorescent sensors
4 Conclusion and outlook

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669.
[2] 徐秀娟(Xu X J),秦金贵(Qin J G),李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21: 2559-2567
[3] Xu J, Huang J, Li J, Yan J, Qin J, Li Z. Chem. Commun., 2011, 47: 12385-12387
[4] Guo S, Dong S. TRAC-Trend. Anal. Chem., 2009, 28: 96-109
[5] Yanase Y, Araki A, Suzuki H, Tsutsui T, Okamoto K, Nakatani T, Hiragun T, Hide M. Biosen. Bioelectron., 2010, 25: 1244-1247
[6] Sadek A S, Karabalin R B, Du J, Roukes M L, Koch C, Masmanidis S C. Nano Lett., 2010, 10: 1769-1773
[7] Domaille D W, Zeng L, Chang C J. J. Am. Chem. Soc., 2010, 132: 1194-1195
[8] He H, Riedl T, Lerf A, Klinowski J. J. Phys. Chem., 1996, 100: 19954-19958
[9] Rojas S F, Ojeda C B. Anal. Chim. Acta, 2009, 635: 22-44
[10] Zhao X, Song N, Jia Q, Zhou W. Microchim. Acta, 2009, 166: 329-335
[11] Yamini Y, Rezaee M, Khanchi A, Faraji M, Saleh A. J. Chromatogr. A, 2010, 1217: 2358-2364
[12] Wen Y, Peng C, Li D, Zhuo L, He S, Wang L, Huang Q, Xu Q, Fan C. Chem. Commun., 2011, 47: 4661-4663
[13] Zhao X H, Kong R M, Zhang X B, Meng H M, Liu W N, Tan W, Shen G L, Yu R Q. Anal. Chem., 2011, 5062-5066
[14] Liu M, Zhao H, Chen S, Yu H, Zhang Y, Quan X. Biosen. Bioelectron., 2011, 4111-4116
[15] Wen Y, Xing F, He S, Song S, Wang L, Long Y, Fan C. Chem. Commun., 2010, 46: 2596-2598
[16] Kong L, Wang J, Zheng G, Liu J. Chem. Commun., 2011, 47: 10389-10391
[17] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem., 2009, 121: 4879-4881
[18] Lu C H, Li J, Liu J J, Yang H H, Chen X, Chen G N. Chem.-Eur. J., 2010, 16: 4889-4894
[19] Li F, Huang Y, Yang Q, Zhong Z, Wang L, Song S, Fan C. Nanoscale, 2010, 2: 1021-1026
[20] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fan C. Adv. Func. Mater., 2010, 20: 453-459
[21] Dong H, Gao W, Yan F, Ji H, Ju H. Anal. Chem., 2010, 82: 5511-5517
[22] Wu C, Zhou Y, Miao X, Ling L. Analyst, 2011, 136: 2106-2110
[23] Balapanuru J, Yang J X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q H, Loh K P. Angew. Chem., 2010, 122: 6699-6703
[24] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem., 2010, 122: 5844-5847
[25] Liu M, Zhao H, Quan X, Chen S, Fan X. Chem. Commun., 2010, 46: 7909-7911
[26] Chen Q, Wei W, Lin J M. Biosen. Bioelectron., 2011, 26: 4497-4502
[27] Chang H, Tang L, Wang Y, Jiang J, Li J. Anal. Chem., 2010, 82: 2341-2346
[28] Jang H, Kim Y K, Kwon H M, Yeo W S, Kim D E, Min D H. Angew. Chem., 2010, 122: 5839-5843
[29] Wu W, Hu H, Li F, Wang L, Gao J, Lu J, Fan C. Chem. Commun., 2011, 47: 1201-1203
[30] Lu C H, Li J, Qi X J, Song X R, Yang H H, Chen X, Chen G N. J. Mater. Chem., 2011, 21: 10915-10919
[31] Bhunia S K, Jana N R. ACS Appl. Mater. Inter., 2011, 3(9):3335-3341
[32] Lu C H. Li J. Lin M H. Wang Y W, Yang H H, Chen X, Chen G N. Angew. Chem., 2010, 122: 8632-8635
[33] Liu C, Wang Z, Jia H, Li Z. Chem. Commun., 2011, 47: 4661-4663
[34] Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z. Angew. Chem., 2011, 50: 6851-6854
[35] Sheng L, Ren J, Miao Y, Wang J, Wang E. Biosen. Bioelectron., 2011, 26: 3494-3499
[36] Wei W, Qu K, Ren J, Qu X. Chem. Sci., 2011, 2: 2050-2056
[37] Shi Y, Huang W T, Luo H Q, Li N B. Chem. Commun., 2011, 47: 4676-4678.
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[4] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[5] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[6] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[7] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[8] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[9] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[10] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[11] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[12] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[13] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[14] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[15] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.