中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Application of Frustrated Lewis Pairs in the Activation of Small Molecules

Xu Yingying, Li Zhao, Maxim Borzov, Nie Wanli   

  1. Key Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
  • Received: Revised: Online: Published:
PDF ( 1101 ) Cited
Export

EndNote

Ris

BibTeX

Recently, frustrated Lewis pairs (FLPs) with unique chemical properties were found to exhibit high activity in catalytic hydrogenation and activation of small molecules. FLPs are now considered as a new prospective type of transition metal free catalysts and this area of chemistry is currently under intense development. This review summarizes the data of the recent achievements in this field. Different aspects concerning the FLPs’ nature, their capability to activate small molecules, possible mechanisms of the dihydrogen activation, along with the known practical applications of FLPs in catalysis are discussed in details. While the driving forces responsible for the reactivity of FLPs in respect to small molecules seem to be rather evident and, actually, present classical electrostatic intermolecular interactions, prior to the first reports on FLPs this brilliantly simple concept has never been utilized in the catalyst design. Since the pioneering work on FLPs in 2006, it is the native elegance of the approach which defines the general productivity of the investigations in this prospective direction. Unfortunately, till now the studies on the FLPs’ chemistry are comparatively few in China. We hope that this contribution could drive more attention of Chinese researchers to this interesting and potent area of modern chemistry. Contents 1 Introduction
2 Structure types of FLPs
3 Researchon activation of small molecules with FLPs
4 Mechanisms of hydrogen activation
5 Application of FLPs as non-metallic catalysts
5.1 Application examples of FLPs in the catalytic hydrogenation
5.2 Application of FLPs in the CO2 transformation
6 Conclusion

CLC Number: 

[1] Lewis G N. Valence and the Structure of Atoms and Molecules. 2nd ed. NY: Chemical Catalogue Company, Inc., 1923. 113-115
[2] Welch G C, Stephan D W. J. Am. Chem. Soc., 2007, 129: 1880-1881
[3] Wittig G, Benz E. Chem. Ber., 1959, 92: 1999-2013
[4] Tochtermann W. Angew. Chem., 1966, 78: 355-375
[5] Breen T L, Stephan D W. Inorg. Chem., 1992, 31: 4019-4022
[6] Doring S, Erker G, Frahlich R, Meyer O. Organometallics, 1998, 17: 2183-2187
[7] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124-1126
[8] Chase P A, Stephan D W. Angew. Chem., 2008, 120: 7543-7547
[9] Holschumacher D, Bannenberg T, Hrib C G, Jones P G, Tamm M. Angew. Chem., 2008, 120: 7538-7542
[10] Stephan D W, Erker G. Angew. Chem. Int. Ed., 2010, 49: 46-76
[11] Sumerin V, Schulz F, Nieger M, Leskela M, Repo T, Rieger B. Angew. Chem., 2008, 120: 6090-6092
[12] Sumerin V, Schulz F, Nieger M, Leskelo M, Repo T, Rieger B. Angew. Chem. Int. Ed., 2008, 47: 6001-6003
[13] Ullrich M, Lough A J, Stephan D W. J. Am. Chem. Soc., 2009, 131: 52-53
[14] Chase P A, Jurca T, Stephan D W. Chem. Commun., 2008, 1701-1703
[15] Spies P, Erker G, Kehr G, Bergander K, Fröehlich R, Grimme S, Stephan D W. Chem. Commun., 2007, 5072-5074
[16] Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskela M, Pyykko P, Repo T, Rieger B. J. Organomet. Chem., 2009, 694: 2654-2660
[17] Spies P, Kehr G, Bergander K, Wibbeling B, Frahlich R, Erker G. Dalton Trans., 2009, 1534-1541
[18] Monkowius U, Nogai S, Schmidbaur H. Dalton Trans., 2003, 987-991
[19] Spies P, Fröehlich R, Kehr G, Erker G, Grimme S. Chem. Eur. J., 2008, 14: 333-343
[20] Geier S J, Stephan D W. J. Am. Chem. Soc., 2009, 131: 3476-3477
[21] Wang H, Fröehlich R, Kehr G, Erker G. Chem. Commun., 2008, 5966-5968
[22] Holschumacher D, Bannenberg T, Hrib C G, Jones P G, Tamm M. Angew. Chem., 2008, 120: 7538-7542
[23] Chen D, Wang Y, Klankermayer J. Angew. Chem. Int. Ed., 2010, 49: 9475-9478
[24] Ramos A, Lough A J, Stephan D W. Chem. Commun., 2009, 1118-1120
[25] Axenov K V, Kehr G, Frahlich R, Erker G. J. Am. Chem. Soc., 2009, 131: 3454-3455
[26] Voss T, Sortais J, Fröehlich R, Kehr G, Erker G. Organometallics, 2011, 30: 584-594
[27] Spies P, Erker G, Kehr G, Bergander K, Fröehlich R, Grimme S, Stephan D W. Chem. Commun., 2007, 5072-5074
[28] Rokob T A, Hamza A, Stirling A, P醦ai I. Angew.Chem., 2008, 120: 2469-2472
[29] Hamza A, Stirling A, Rokob T A, P醦ai I. Int. J. Quantum Chem., 2009, 109: 2416-2425
[30] Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed., 2010, 49: 1402-1405
[31] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124-1126
[32] Welch G C, Stephan D W. J. Am. Chem. Soc., 2007, 129: 1880-1881
[33] Axenov K V, Kehr G, Fröehlich R, Erker G. Angew. Chem., 2008, 120: 7654-7657
[34] Spies P, Schwendemann S, Lange S, Kehr G, Fröehlich R, Erker G. Angew. Chem. Int. Ed., 2008, 47: 7543-7546
[35] Stephan D W, Erker G. Angew. Chem., 2010, 122: 50-81
[36] Hamza A, Stirling A, Rokob T A, P醦ai I. Int. J. Quantum Chem., 2009, 109: 2416-2425
[37] Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed., 2010, 49: 1402-1405
[38] Chase P A, Welch G C, Jurca T, Stephan D W. Angew. Chem., 2007, 119: 8196-8199
[39] Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G. Angew. Chem., 2008, 120: 7654-7657
[40] Wang H, Fröhlich R, Kehr G, Erker G. Chem. Commun., 2008, 5966-5968
[41] Chase P A, Jurca T, Stephan D W. Chem. Commun., 2008, 1701-1703
[42] Chase P A, Welch G C, Jurca T, Stephan D W. Angew. Chem. Int. Ed., 2007, 46: 8050-8053
[43] Liptau P, Tebben L, Kehr G, Frahlich R, Erker G, Hollmann F, Rieger B. Eur. J. Org. Chem., 2005,9: 1909-1918
[44] Grimme S, Stephan D W, Erker G. Angew. Chem. Int. Ed., 2009, 48: 6643-6646
[45] Menard G, Stephan D W. J. Am. Chem. Soc., 2010, 132: 1796-1797
[46] Berkefeld A, Piers W E, Parvez M. J. Am. Chem. Soc., 2010, 132: 10660-10661
[1] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[2] Li Guoping,Jiang Huanfeng*,Li Jinheng. Hydrogenation Reactions in Supercritical or Near-Critical Fluid [J]. Progress in Chemistry, 2001, 13(06): 455-.