中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst

Xu Rong, Chen Chunxia   

  1. College of Science, Northeast Forestry University, Harbin 150040, China
  • Received: Revised: Online: Published:
PDF ( 1816 ) Cited
Export

EndNote

Ris

BibTeX

Poly(ε-caprolactone) (PCL) is an important class of biocompatible materials, which makes them interesting materials for a range of biomedical and commodity applications, including controlled drug release, tissue engineering, medical implants or environmentally friendly packaging materials. PCL can be prepared through the ring-opening polymerization of ε-caprolactone catalyzed by organic molecules. Compared to traditional metal-catalyzed ROPs, organocatalysis processes can be performed under milder reaction conditions with controlled molar masses and narrow dispersities, furthermore the metal contaminants of the polymer products can be avoided to be removed prior to application as biomedical and pharmaceutical materials. Herein the progress of organocatalysts in the ring-opening polymerization of ε-caprolactone is reviewed according to different means of the activation of the catalysts. The advantages and disadvantages of various catalytic systems are summarized, and development trends and application prospects of organocatalysis for polymerization of ε-caprolactone are also discussed. Contents 1 Introduction
2 Organocatalysts based on electrophilic monomer activation
3 Lewis bases and organocatalysts based on nucleophilic monomer activation
3.1 Organocatalysis by nucleophilic monomer activation
3.2 Organocatalysis by initiator/chain-end activation
4 Synergistic bifunctional organocatalysts and initiator/chain-end activation
5 Conclusion

CLC Number: 

[1] Vion J M, Jerome R, Teyssie P, Aubin M, Prudhomme R E. Macromolecules, 1986, 19(7): 1828-1838
[2] Barrett D G, Yousaf M N. Molecules, 2009, 14: 4022-4050
[3] Coulembier O, Degée P, Hedrick J L, Dubois P. Prog. Polym. Sci., 2006, 31(8): 723-747
[4] Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem. Rev., 2004, 104(12): 6147-6176
[5] Albertsson A C, Varma I K. Biomacromolecules, 2003, 4(6): 1466-1486
[6] Kricheldorf H R, Kreiser-Saunders I, Stricker A. Macromolecules, 2000, 33(3): 702-709
[7] Degree P, Dubois P, Jerome R. Macromol. Chem. Phys., 1997, 198(6): 1973-1984
[8] Storey R F, Sherman J W. Macromolecules, 2002, 35(5): 1504-1512
[9] Shen Y Q, Shen Z Q, Zhang Y F. J. Polym. Sci. Part A: Polym. Chem., 1997, 35(8): 1339-1352
[10] 申淼(Shen M), 刘绍峰 (Liu S F), 张文娟 (Zhang W J), 孙文华 (Sun W H). 高分子通报 (Polym. Bull.), 2011, 55-63
[11] Nahrain E K, Wonhee J, Waymouth R M, Russell C P, Lohmeijer B G G, Hedrick J L. Chem. Rev., 2007, 107(12): 5813-5840
[12] Dove A P. Chem. Commun., 2008, 6446-6470
[13] Dubois P, Coulembier O, Raquez J M. Handbook of Ring-Opening Polymerization. Weinheim: Wiley-VCH, 2009
[14] Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5): 2093-2107
[15] Shibasaki Y, Sanada H, Makiko Y, Sanda F, Endo T. Macromolecules, 2000, 33(12): 4316-4320
[16] Liu J Y, Liu L J. Macromolecules, 2004, 37(8): 2674-2676
[17] Casas J, Persson P V, Iversen T, Armando C. Adv. Synth. Catal., 2004, 346(9): 1087-1089
[18] Gazeau-Bureau S, Delcroix D, Martin-Vaca B, Bourissou D, Navarro C, Magnet S P. Macromolecules, 2008, 41(11): 3782-3784
[19] Wilson B C, Jones C W. Macromolecules, 2004, 37(26): 9709-9714
[20] Kosuke M, Toshifumi S, Toyojim K. Macromolecules, 2011, 44(7): 1999-2005
[21] Myers M, Connor E F, Glauser T. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(7): 844-851
[22] Connor E F, Nyce G W, Myers M, Andresas M, Hedrick J L. J. Am. Chem. Soc., 2002, 124(6): 914-915
[23] Nyce G W, Glauser T, Connor E F, Mock A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2003, 125(10): 3046-3056
[24] Scholten M D, Hedrick J L, Waymouth R M. Macromolecules, 2008, 41(20): 7399-7404
[25] Raynaud J, Gnanou Y, Taton D. Macromolecules, 2009, 42(16): 5996-6005
[26] Dove A P, Pratt R C, Lohmeijer B G G, Culkin D A, Hagberg E C, Nyce G W, Waymouth R M, Hedrick J L. Polymer, 2006, 47(11): 4018-4025
[27] Kamber N E, Jeong W, Gonzalez S, Hedrick J L, Waymouth R M. Macromolecules, 2009, 42(5): 1634-1639
[28] Kaljurand I, Kutt A, Soovali L. J. Org. Chem., 2005, 70: 1019-1028
[29] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12): 4154-4158
[30] Schlaad H, Kukula H, Rudloff J, Below I. Macromolecules, 2001, 34(13): 4302-4304
[31] Rexin O, Mulhaupt R. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(7): 864-873
[32] Lohmeijer B G G, Pratt R C, Leibfarth F, David A L, Andrew P D, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574-8583
[33] Zhang L, Nederberg F, Messman J M, Pratt R C, Hedrick J L, Wade C G. J. Am. Chem. Soc., 2007, 129(42): 12610-12611
[34] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12): 4154-4158
[35] Pratt R C, Lohmeijer B G G, Long D A, Pontus L P N, Dove A P, Li H, Wade C G, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(23): 7863-7871
[36] Bensa D, Rodriguez J. Synth. Commun., 2004, 34(8): 1515-1533
[37] Schuchardt U, Vargas R M, Gelbard G J J. J. Mol. Catal. A: Chem., 1995, 99(1): 65-70
[38] Heldebrant D J, Jessop P G, Thomas C A, Eckert C A, Liotta C L. J. Org. Chem., 2005, 70(13): 5335-5338
[39] Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127(40): 13798-13799
[40] Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574-8583
[41] Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2006, 128(14): 4556-4557
[42] Zhang L, Pratt R C, Nederberg F, Horn H W, Rice J E, Waymouth R M, Wade C G, Hedrick J L. Macromolecules, 2010, 43(3): 1660-1664
[1] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[2] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[3] Liu Hailing. Synthesis and Organocatalysis of Supported Phosphine [J]. Progress in Chemistry, 2013, 25(0203): 322-329.
[4] . Organocatalytic Asymmetric α-Functionalization of β-Ketoesters [J]. Progress in Chemistry, 2010, 22(09): 1679-1686.
[5] Li Nan, Liu Weijun, Gong Liuzhu. Asymmetric Organocatalysis [J]. Progress in Chemistry, 2010, 22(07): 1362-1379.
[6] Wang Chun Liu Weihua Zhou Xin Li Yuemin Li Yunpeng. Organocatalytic Asymmetric [4+2] Cycloaddition Reactions [J]. Progress in Chemistry, 2009, 21(09): 1857-1868.
[7]

Yao Chengfu|Sun Caixia|Yan Shaoyu|Wu Haihong**

. Chiral Imidazolidinones-catalyzed Asymmetric Reactions [J]. Progress in Chemistry, 2008, 20(06): 887-898.
[8] Ma Jingjun1 Li Ning1,2 Wu Qiuhua1 Zhou Xin1 Zang Xiaohuan1 Wang Chun1**. Organocatalytic Asymmetric Mannich Reaction [J]. Progress in Chemistry, 2008, 20(01): 76-86.