中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Metal-Organic Framework Materials and Their Applications in Catalysis

Li Qingyuan, Ji Shengfu, Hao Zhimou   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
PDF ( 2269 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic Framework (MOF) materials, which are synthesized by self-assembling of the metal ions and the organic ligands, are the special crystal materials with porous structure. Because of their diverse structures, tunable cavity and easy functionalization, MOFs have exhibited the attractive prospects in many fields, such as the gas adsorption and separation, the catalysts, the magnetism and the bio-medicine. In order to get comprehensive understanding of the MOFs’ catalytic properties, in this paper, the categories and common synthesis methods of MOF materials are introduced. The catalysis of the MOF materials, especially, the catalysis of the metal active sites and the active organic ligands in the frameworks of the MOF, and the catalytic active components supported in MOFs, are summarized and reviewed. The development trends of MOF materials in the catalytic applications are also prospected. Contents 1 Introduction
2 Categories and syntheses of MOFs materials
2.1 Categories of MOF materials
2.2 Syntheses of MOF materials
3 Applications of MOFs in catalysis
3.1 Catalytic reactions of MOFs with metal active sites
3.2 Catalytic reactions of MOFs with active organic ligands
3.3 Catalytic reactions of MOFs with loading active guests
4 Conclusion and outlook

CLC Number: 

[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111: 5962-5964
[2] Yaghi O M, Li G, Li H. Nature, 1995, 378: 703-706
[3] Corma A, Garcia H, Llabrés I, Xamena F X. Chem. Rev., 2010, 110: 4606-4655
[4] Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38: 1284-1293
[5] Lee J Y, Farha O K, Roberts J, Scheidt K A. Chem. Soc. Rev., 2009, 38: 1450-1459
[6] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38: 1248-1256
[7] Wang Z, Chen G, Ding K. Chem. Rev., 2009, 109: 322-359
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196-1231
[9] Jiang H L, Xu Q. Chem. Commun., 2011, 3351-3370
[10] Morris R E, Wheatley P S. Angew. Chem. Int. Ed., 2008, 47: 4966-4981
[11] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353-1379
[12] Keskin S, Kzlel S. Ind. Eng. Chem. Res., 2011, 50: 1799-1812
[13] Allendorf M D, Bauer C A, Bhaktaa R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330-1352
[14] Ranocchiari M, van Bokhoven J A. Phys. Chem. Chem. Phys., 2011, 13: 6388-6396
[15] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2005, 329: 424-428
[16] Hu A, Ngo H L, Lin W. Angew. Chem. Int. Ed., 2003, 42: 6000-6003
[17] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998, 37: 1460-1494
[18] Barthelet K, Marrot J, Riou D, Férey G. Angew. Chem. Int. Ed., 2002, 41: 281-284
[19] 金钊 (Jin Z). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2010
[20] 许青 (Xu Q). 北京化工大学博士论文 (Doctoral Dissertation of Beijing University of Chemical Technology), 2010
[21] Ma S, Zhou H C. J. Am. Chem. Soc., 2006, 128: 11734-11735
[22] Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705-714
[23] Li H, Eddaoudi M, O’keeffe M, Yaghi O M. Nature, 1999, 402: 276-279
[24] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295: 469-472
[25] Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. PNAS, 2006, 103: 10186-10191
[26] Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. Angew. Chem. Int. Ed., 2004, 43: 6296-6301
[27] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040-2043
[28] Mellot-Draznieks C, Girard S, Férey G. J. Am. Chem. Soc., 2002, 124: 15326-15335
[29] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148-1150
[30] Qi Y, Luo F, Che Y X, Zheng J. Cryst. Growth Des., 2008, 8(2): 606-611
[31] Wang C, Xie Z G, de Krafft K E, Lin W L. J. Am. Chem. Soc., 2011, 133: 13445-13454
[32] Chen X Y, Zhao B, Shi W, Xia J, Cheng P, Liao D Z, Yan S P, Jiang Z H. Chem. Mater., 2005, 17(11): 2866-2874
[33] Chen B L, Ockwig N W, Fronczek F R, Contreras D S, Yaghi O M. Inorg. Chem., 2005, 44(2): 181-183
[34] Polshettiwar V, Varma R S. Chem. Soc. Rev., 2008, 37(8): 1546-1557
[35] Jin K, Huang X Y, Pang L, Li J, Appel A, Wherland S. Chem. Commun., 2002, 2872-2873
[36] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Applied Catalysis A: General, 2009, 358(2): 249-253
[37] Wang Z Q, Cohen S M. Chem. Soc. Rev., 2009, 38: 1315-1329
[38] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. Science, 2008, 319 (5865): 939-943
[39] Meilikhov M, Yusenko K, Esken D, Turner S, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2010, 24: 3701-3704
[40] Kalidindi S B, Esken D, Fischer R A. Chem. Eur. J., 2011, 17: 6594--6597
[41] Pan Y, Yuan B, Li Y, He D. Chem. Commun., 2010, 2280-2282
[42] Li H, Zhu Z, Zhang F, Xie S, Li H, Li P, Zhou X. ACS. Catal., 2011, 1: 1604-1612
[43] Schelichte K, Kratzke T, Kaskel S. Microporous and Mesoporous Mater., 2004, 73(1/2): 81-88
[44] Horike S, Dinca M, Tamaki K, Long J R. J. Am. Chem. Soc., 2008, 130: 5854-5855
[45] Dhakshinamoorthy A, Alvaro M, Garcia H. J. Catal., 2009, 267: 1-4
[46] Llabrés I, Xamena F X, Casanova O, Tailleur R G, Garcia H, Corma A. J. Catal., 2008, 255: 220-227
[47] Jiang D, Mallat T, Meier D M, Urakawa A, Baiker A. J. Catal., 2010, 270: 26-33
[48] Lu Y, Tonigold M, Bredenkötter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 2411-2417
[49] Wang X, Shi L, Li M, Ding K. Angew. Chem. Int. Ed., 2005, 44: 6362-6366
[50] Cho S H, Ma B, Nguyen S T, Hupp J T, Albrecht-Schmitt T E. Chem. Commun., 2006, 2563-2565
[51] Navarro J A R, Barea E, Salas J M, Masciocchi M, Galli S, Sironi A, Ania C O, Parra J B. Inorg. Chem., 2006, 45: 2397-2399
[52] Llabrés I, Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250: 294-298
[53] Chang J S, Wang H J S, Jhung S H, Park S E, Feréy G, Cheetham A K. Angew. Chem. Int. Ed., 2004, 43: 2819-2822
[54] Zhang X, Llabrés I, Xamena F X, Corma A. J. Catal., 2009, 265: 155-160
[55] Horcajada P, Surble S, Serre C, Hong D Y, Seo Y K, Chang J S, Greneche J M, Margiolaki I, Feréy G. Chem. Commun., 2007, 2820-2822
[56] Ravon U, Domine M E, Gaudillère C, Desmartin-Chomel A, Farrusseng D. New J. Chem., 2008, 32: 937-940
[57] Phan N T S, Le K K A, Phan T D. Appl. Catal. A: General, 2010, 382: 246-253
[58] Bernini M C, Gandara F, Glesias I M, Nejko S N, Gutierrez-Puebla E, Brusau E V, Arda N G E, Monge M A. Chem. A Eur. J., 2009, 15: 4896-4905
[59] Gandara F, Puebla E G R, Iglesias M, Proserpio D M, Snejko N, Monge M A. Chem. Mater., 2009, 21: 655-661
[60] Yu Z T, Liao Z L, Jiang Y S, Li G H, Chen J S. Chem. Eur. J., 2005, 11: 2642-2650
[61] Mahata P, Madras G, Natarajan S. J. Phys. Chem. B, 2006, 110: 13759-13768
[62] Llabrés I, Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2007, 111: 80-85
[63] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204-4205
[64] Han J W, Hill L. J. Am. Chem. Soc., 2007, 129: 15094-15095
[65] Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Monge M A, Cuiz-Valero R, Snejko N. Inorg. Chem., 2002, 41: 2429-2432
[66] Gandara F, de Andres A, Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Cryst. Growth Des., 2008, 8: 378-380
[67] Neogi S, Sharma M K, Bharadwaj P K. J. Mol. Catal. A, 2009, 299: 1-4
[68] Tran U P N, Le K K A, Phan N T S. ACS Catal., 2011, 1: 120-127
[69] Dewa T, Saiki T, Aoyama Y. J. Am. Chem. Soc., 2001, 123: 502-503
[70] Gándara F, Gomez-lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72-76
[71] Zhou Y, Song J, Liang S, Hu S, Liu H, Jiang T, Han B. Journal of Molecular Catalysis A: Chemical, 2009, 308: 68-72
[72] Jian L, Chen C, Lan F, Deng S, Xiao W, Zhang N. Solid State Science, 2011, 13: 1127-1131
[73] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404: 982-986
[74] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129: 2607-2614
[75] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47: 4144-4148
[76] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M, Kapteijn F. J. Catal., 2009, 261: 75-87
[77] Esken D, Turner S, Lebedev O I, Van Tendeloo G, Fischer R A. Chem. Mater., 2010, 22: 6393-6401
[78] Schröder F, Esken D, Cokoja M, van den Berg M W E, Lebedev O I, van Tendeloo G, Walaszek B, Buntkovsky G, Limbach H H, Chaudret B, Fischer R A. J. Am. Chem. Soc., 2008, 130: 6119-6130
[79] Greathouse J A, Allendorf M D. J. Am. Chem. Soc., 2006, 128: 10678-10679
[80] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14: 8456-8460
[81] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114: 13362-13369
[82] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257: 315-323
[83] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131: 11302-11303
[84] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19: 7625-7631
[85] Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catal. Commun., 2008, 9: 1286-1290
[86] Henschel A, Gedrich K, Krachner R, Kaskel S. Chem. Commun., 2008, 4192-4194
[87] Sabo M, Henschel A, Fröde H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17: 3827-3832
[88] Juan-Alcaňiz J, Ramos-Fernandez E V, Lafont U, Gascon J, Kapteijn F. J. Catal., 2010, 269: 229-241
[89] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883-1888
[90] Moulton B, Zaworotko M J. Chem. Rev., 2001, 101: 1629-1658
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[9] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[10] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[11] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[12] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[13] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[14] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[15] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.