中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Fabrication of Patterned Inorganic Nanofibers by Electrospinning

Liu Ruilai1,2, Liu Haiqing2, Liu Junshao1, Jiang Huihua1   

  1. 1. Department of Environmental and Architectural Engineering, Key Laboratory for Green Chemical Technology of Fujian Higher Education, Wuyi University, Wuyishan 354300, China;
    2. College of Chemistry and Materials Science, Key Laboratory of Polymer Materials of Fujian Province, Fujian Normal University, Fuzhou 350007, China
  • Received: Revised: Online: Published:
PDF ( 1893 ) Cited
Export

EndNote

Ris

BibTeX

The electrospinning technique has been regarded as the simplest and most effective techniques for massive fabrication of nanomaterials. Various inorganic micro- and nano-fibers have been successfully electrospun in recent years. These fibers can be amorphous, polycrystalline, dense, porous, or hollow. In this review, the fabrication of patterned inorganic nanofibers via electrospinning is presented. After a brief description of the setups for electrospinning, we choose to concentrate on the mechanisms and theoretical models that have been developed for electrospinning. It introduces electrohydrodynamic (EHD) theory that allows the prediction of organic fiber diameter. And the equation was revised in order to be applicable to most inorganic electrospinning systems, as well as have the ability to control the diameter and morphology. It reviews fabrication of aligned nanofibers by using different collectors such as a cylinder collector with high rotating speed, a thin wheel with sharp edge, a pair of split electrodes and the knife-edged counter-electrodes, and fabrication of hollow nanofibers by using sacrificial templates and coaxial electrospinning. At last, it reviews the functional hierarchical structured nanofibers prepared by in situ sol-gel and post-processing methods such as hydrothermal synthesis and chemical vapor deposition. Additionally, the future trends of these interesting patterned inorganic nanofibers, especially the functional hierarchical structured nanofibers are outlooked. Contents 1 Introduction
2 Set-up and principle of electrospinning
3 Preparation of inorganic nanofibers
3.1 Preparation of solution
3.2 Electrospinning of solution
3.3 Calcination of as-spun nanofibers
4 Preparation of patterned inorganic nanofibers
4.1 Aligned nanofibers
4.2 Hollow nanofibers
4.3 Functional hierarchical structured nanofibers
5 Applications of inorganic nanofibers
6 Conclusion and prospects

CLC Number: 

[1] Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. J. Appl. Phys., 2007, 102: 111101-111116
[2] Piticescu R M, Piticescu R, Taloi D, Badilita V. Nanotechnology, 2003, 14: 312-317
[3] Rao C, Vivekchand S, Biswas K, Govindaraj A. Dalton Transactions, 2007, 3728-3749
[4] Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y. Nano Lett., 2002, 2(7): 717-720
[5] Reneker D H, Chun I. Nanotechnology, 1996, 7: 216-223
[6] Dzenis Y. Science, 2004, 304(5679): 1917-1919
[7] 黄浪欢(Huang L H), 王后锦(Wang H J), 刘应亮(Liu Y L), 焦自斌(Jiao Z B), 邵子倍(Shao Z B). 化学进展(Progress in Chemistry), 2010, 22(5): 867-876
[8] Li D, Xia Y. Adv. Mater., 2004, 16(14): 1151-1170
[9] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63(15): 2223-2253
[10] Ma M, Hill R M, Lowery J L, Fridrikh S V, Rutledge G C. Langmuir, 2005, 21(12): 5549-5554
[11] Feng J. Phys. Fluids, 2002, 14(11): 3912-3927
[12] Liu R, Huang Y, Xiao A, Liu H. J. Alloys Compd., 2010, 503(1): 103-110
[13] Hohman M M, Shin M, Rutledge G, Brenner M P. Phys. Fluids, 2001, 13(8): 2201-2020
[14] Hohman M M, Shin M, Rutledge G, Brenner M P. Phys. Fluids, 2001, 13(8): 2221-2236
[15] Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Appl. Phys. Lett., 2001, 78(8): 1149-1151
[16] Reneker D H, Yarin A L, Fong H, Koombhongse S. J. Appl. Phys., 2000, 87(9): 4531-4547
[17] Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J C. J. Am. Ceram. Soc., 2006, 89(2): 395-407
[18] Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Polymer, 2001, 42(25): 9955-9967
[19] Deitzel J M, Kleinmeyer J, Harris D, Beck N C. Polymer, 2001, 42(1): 261-272
[20] Fridrikh S V, Yu J H, Brenner M P, Rutledge G C. Phys. Rev. Lett., 2003, 90(14): art. no. 144502
[21] Park H. Doctoral Dissertation of University of Florida, 2005
[22] Yarin A L, Koombhongse S, Reneker D H. J. Appl. Phys., 2001, 89(5): 3018-3026
[23] Fong H, Chun I, Reneker D. Polymer, 1999, 40(16): 4585-4592
[24] Tang C, Ye S, Liu H. Polymer, 2007, 48(15): 4482-4491
[25] Koski A, Yim K, Shivkumar S. Mater. Lett., 2004, 58(3/4): 493-497
[26] McKee M G, Wilkes G L, Colby R H, Long T E. Macromolecules, 2004, 37(5): 1760-1767
[27] Gupta P, Elkins C, Long T E, Wilkes G L. Polymer, 2005, 46(13): 4799-4810
[28] Liu H, Hsieh Y L. J. Polym. Sci. Part B: Polym. Phys., 2002, 40(18): 2119-2129
[29] Liu H, Tang C. Polym. J., 2006, 39(1): 65-72
[30] Li D, Wang Y, Xia Y. Nano Lett., 2003, 3(8): 1167-1171
[31] 梁建鹤(Liang J H), 杨锦霞(Yang J X), 黄应兴(Huang Y X), 刘海清(Liu H Q). 化学学报(Acta Chimica Sinica), 2010, 68(17): 1717-1718
[32] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6): 1861-1869
[33] Kokubo H, Ding B, Naka T, Tsuchihira H, Shiratori S. Nanotechnology, 2007, 18: art. no. 165604
[34] Song M Y, Kim D K, Ihn K J, Jo S M, Kim D Y. Synth. Met., 2005, 153(1/3): 77-80
[35] Formo E, Yavuz M S, Lee E P, Lane L, Xia Y. J. Mater. Chem., 2009, 19(23): 3878-3882
[36] Wang G, Ji Y, Huang X, Yang X, Gouma P I, Dudley M. J. Phys. Chem. B, 2006, 110(47): 23777-23782
[37] Liu R, Ye H, Xiong X, Liu H. Mater. Chem. Phys., 2010, 121(3): 432-439
[38] Formo E, Camargo P H C, Lim B, Jiang M, Xia Y. Chem. Phys. Lett., 2009, 476(1/3): 56-61
[39] Liu H, Yang J, Liang J, Huang Y, Tang C. J. Am. Ceram. Soc., 2008, 91(4): 1287-1291
[40] Deheer W A, Bacsa W, Chatelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D. Science, 1995, 268(5212): 845-847
[41] Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Biomacromolecules, 2002, 3(2): 232-238
[42] Katta P, Alessandro M, Ramsier R, Chase G. Nano Lett., 2004, 4(11): 2215-2218
[43] Liao H Q, Wu Y M, Wu M Y, Zhan X R, Liu H Q. Cellulose, 2012, 19(1): 111-119
[44] Khamforoush M, Mahjob M. Mater. Lett., 2011, 65(3): 453-455
[45] Theron A, Zussman E, Yarin A. Nanotechnology, 2001, 12(3): 384-390
[46] Li D, Wang Y, Xia Y. Adv. Mater., 2004, 16(4): 361-366
[47] McCann J T, Chen J I L, Li D, Ye Z G, Xia Y. Chem. Phys. Lett., 2006, 424(1/3): 162-166
[48] Li D, Herricks T, Xia Y. Appl. Phys. Lett., 2003, 83(22): 4586-4588
[49] Li D, Ouyang G, McCann J T, Xia Y. Nano Lett., 2005, 5(5): 913-916
[50] Teo W E, Ramakrishna S. Nanotechnology, 2005, 16: 1878-1885
[51] Liu Y, Zhang X, Xia Y, Yang H. Adv. Mater., 2010, 22(22): 2454-2457
[52] Choi S H, Ankonina G, Youn D Y, Oh S G, Hong J M, Rothschild A, Kim I D. ACS Nano, 2009, 3(9): 2623-2631
[53] Kim W S, Lee B S, Kim D H, Kim H C, Yu W R, Hong S H. Nanotechnology, 2010, 21(24): art. no. 245605
[54] Qiu Y, Yu J. Solid State Commun., 2008, 148(11/12): 556-558
[55] Zhang T, Ge L, Wang X, Gu Z. Polymer, 2008, 49(12): 2898-2902
[56] Li D, Xia Y. Nano Lett., 2004, 4(5): 933-938
[57] McCann J T, Li D, Xia Y. J. Mater. Chem., 2004, 15(7): 735-738
[58] Zhan S, Chen D, Jiao X, Tao C. J. Phys. Chem. B, 2006, 110(23): 11199-11204
[59] Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485-6489
[60] Chang G, Zheng X, Chen R, Chen X, Chen L, Chen Z. Acta Phys. Chim. Sin., 2008, 24(10): 1790-1797
[61] Li D, McCann J T, Xia Y. Small, 2005, 1(1): 83-86
[62] 张双虎(Zhang S H), 董相廷(Dong X T), 徐淑芝(Xu S Z), 王进贤(Wang J X). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2008, 37(12): 2196-2200
[63] Zhan S, Chen D, Jiao X. J. Colloid Interface Sci., 2008, 318(2): 331-336
[64] Yuan T, Zhao B T, Cai R, Zhou Y K, Shao Z P. J. Mater. Chem., 2011, 21(38): 15041-15048
[65] Zhao Y, Cao X, Jiang L. J. Am. Chem. Soc., 2007, 129(4): 764-765
[66] Xiang H, Long Y, Yu X, Zhang X, Zhao N, Xu J. CrystEngComm, 2011, 13(15): 4856-4860
[67] Wei S, Zhou M, Du W. Sensors Actuat. B: Chem., 2011, 160(1): 753-759
[68] Zhang Z, Li X, Wang C, Wei L, Liu Y, Shao C. J. Phys. Chem. C, 2009, 113(45): 19397-19403
[69] Cui Q, Dong X, Wang J, Li M. J. Rare Earth, 2008, 26(5): 664-669
[70] Dong X, Wang J, Cui Q, Liu G, Yu W. Int. J. Chem., 2009, 1(1): 13-17
[71] Choi J K, Hwang I S, Kim S J, Park J S, Park S S,Jeong U, Kang Y C, Lee J H. Sensor. Actuat. B: Chem., 2010, 150(1): 191-199
[72] Wei S, Zhang Y, Zhou M. Solid State Commun., 2011, 151(12): 895-899
[73] Dai Y, Liu W, Formo E, Sun Y, Xia Y. Polym. Adv. Technol., 2011, 22: 326-338
[74] Ostermann R, Li D, Yin Y, McCann J T, Xia Y. Nano Lett., 2006, 6(6): 1297-1302
[75] Liu Z, Sun D D, Guo P, Leckie J O. Nano Lett., 2007, 7(4): 1081-1085
[76] Gu Y, Chen D, Jiao X, Liu F. J. Mater. Chem., 2007, 17(18): 1769-1776
[77] Saquing C D, Manasco J L, Khan S A. Small, 2009, 5(8): 944-951
[78] Cavaliere S, Subianto S, Chevallier L, Jones D J, Roziere J. Chem. Commun., 2011, 6834-6836
[79] Panels J E, Lee J, Park K Y, Kang S Y, Marquez M, Wiesner U, Joo Y L. Nanotechnology, 2008, 19: art. no. 455612
[80] Kim S, Lim S K. Appl. Catal. B: Environ., 2008, 84(1/2): 16-20
[81] Meng X, Shin D W, Yu S M, Jung J H, Kim H I, Lee H M, Han Y H, Bhoraskar V, Yoo J B. CrystEngComm, 2011, 13: 3021-3029
[82] Wang N, Sun C, Zhao Y, Zhou S, Chen P, Jiang L. J. Mater. Chem., 2008, 18(33): 3909-3911
[83] Dai Y, Lu X, McKiernan M, Lee E P, Sun Y, Xia Y. J. Mater. Chem., 2010, 20(16): 3157-3162
[84] Wang C, Zhang X, Shao C, Zhang Y, Yang J, Sun P, Liu X, Liu H, Liu Y, Xie T, Wang D. J. Colloid Interface Sci., 2011, 363(1): 157-164
[85] Zhang P, Shao C L, Zhang Z Y, Zhang M Y, Mu J B, Guo Z C, Liu Y C. Nanoscale, 3(7): 2943-2949
[86] Su C, Shao C, Liu Y. J. Colloid Interface Sci., 2011, 346(2): 324-329
[87] Cao T, Li Y, Wang C, Shao C, Liu Y. Langmuir, 2011, 27(6): 2946-2952
[88] Fragala M E, Cacciotti I, Aleeva Y, Lo Nigro R, Bianco A, Malandrino G, Spinella C, Pezzotti G, Gusmano G. CrystEngComm, 2010, 12(11): 3858-3865
[89] Formo E, Peng Z, Lee E, Lu X, Yang H, Xia Y. J. Phys. Chem. C, 2008, 112(27): 9970-9975
[90] Formo E, Lee E, Campbell D, Xia Y. Nano Lett., 2008, 8(2): 668-672
[91] Li C J, Wang J N, Li X Y, Zhang L L. J. Mater. Sci., 2011, 46(7): 2058-2063
[92] Aryal S, Dharmaraj N, Bhattarai S R, Khil M S, Kim H Y. J. Nanosci. Nanotech., 2006, 6(2): 510-513
[93] Remant Bahadur K C, Kim C K, Khil M S, Kim H Y, Kim I S. Mater. Sci. Eng. C, 2008, 28(1): 70-74
[94] Nagamine S, Ishimaru S, Taki K, Ohshima M. Mater. Lett., 2011, 65(19/20): 3027-3029
[95] Lu X, Mao H, Zhang W. Nanotechnology, 2007, 18(2): art. no. 025604
[96] Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y. Macromol. Rapid Commun., 2006, 27(6): 430-434
[1] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[2] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[3] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[4] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[5] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[6] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[7] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[8] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[9] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[10] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[11] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[12] Sun Jiazhen, Kuang Minxuan, Song Yanlin. Control and Application of “Coffee Ring” Effect in Inkjet Printing [J]. Progress in Chemistry, 2015, 27(8): 979-985.
[13] Wang Yihan, Wakisaka Minato. Nanofiber Fabrication Techniques and Its Applicability to Chitosan [J]. Progress in Chemistry, 2014, 26(11): 1821-1831.
[14] Yuan Ling, Liu Yang, Yang Tao, Liu Haimiao, Gao Qingyu. Oscillations and Pattern Formation in Sulfur-Contained Reaction Systems [J]. Progress in Chemistry, 2014, 26(04): 529-544.
[15] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.