中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Zinc Oxide for White Light Emitting Diode

Fang Yunxia, Fang Xiaoming, Zhang Zhengguo   

  1. Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
PDF ( 904 ) Cited
Export

EndNote

Ris

BibTeX

White light-emitting diodes (WLEDs), a new type of cold solid-state lighting sources, have been considered as “the fourth-generation lighting sources” owing to their advantages of small size, high efficiency, and long lifetime. ZnO is an important semiconductor with excellent optoelectronic and piezoelectric properties, and can be easily prepared into various nanostructures with different morphologies. Besides showing a sharp band-gap emission peak located within the ultra-violet region, ZnO nanostructures exhibit a broad deep band emission that can cover the visible light region between 400 nm and 700 nm, which originates from their intrinsic and/or extrinsic defects, and thus show a potential application in WLEDs. This paper systematically introduces several types of WLEDs configuration composed of ZnO nanostructures, and reviews their performance characteristics and research progress. Since the WLEDs just based on the electroluminescence of ZnO nanostructures need to be applied a high bias, the WLEDs consisting of the heterojunctions prepared by depositing ZnO nanostructures directly on p-type semiconductors (such as GaN) become a hot topics. The preparation methods and the obtained morphologies of ZnO nanostructures have effects on the photoluminescent and electroluminescent spectra of the ZnO nanostructures and thus the performance of the WLEDs. Doping with metal ions or cooperating with other semiconductors can effectively tune the emission spectra of ZnO nanomaterials and thus improve the performance of WLEDs. Moreover, ZnO/polymer heretostructures that combine the excellent properties of ZnO nanostructures with the advantages of polymers show great promise for application in WLEDs. Finally, the problems related to the researches on WLEDs based on ZnO nanostructures and the future developing trends are presented. Contents 1 Introduction
2 WLEDs based on electroluminescence of ZnO nanostructures
3 WLEDs based on electroluminescence of ZnO/polymer heterostructures
4 WLEDs based on photoluminescence of nanosized ZnO
5 Conclusions and outlook

CLC Number: 

[1] Dupuis R D, Krames M R. J. Lightwave Technol., 2008, 26: 1154-1171
[2] 郑智斌(Zheng Z B), 彭万华(Peng W H). 液晶与显示 (Chinese Journal of Liquid Crystals and Displays), 2001, 16 (2): 145-149
[3] 王占国 (Wang Z G), 樊志军 (Fan Z J), 刘祥林(Liu X L), 万寿科 (Wan S K). 半导体学报(Journal of Semiconductors), 2001, 22 (5): 569-572
[4] Vázquez M, Núez N, Nogueira E, Borreguero A. Microelectron. Reliab., 2010, 50: 1559-1562
[5] 黄劲松 (Huang J S), 董逊 (Dong S), 刘祥林 (Liu X L), 徐仲英 (Xu Z Y), 葛维琨 (Ge W K). 物理学报 (Chinese Journal of Physics), 2003, 52 (10): 2632-2637
[6] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Pérez J Z, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor A C, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J, Le Si Dang D. Nanotechnology, 2009, 20: art.no.332001
[7] Chang W Y, Fang T H, Weng C I, Yang S S. Appl. Phys. A, 2011, 102: 705-711
[8] Ozgur U, Hofstetter D, Morkoc H. IEEE Proc., 2010, 98: 1255-1268
[9] Wang Z L. Appl. Phys.A, 2007, 88: 7-15
[10] Li H, Huang Y H, Zhang Q, Liu J, Zhang Y. Solid State Sci., 2011, 13: 658-661
[11] Lee M K, Ho C L, Lin C C, Cheng N R, Houng M H, Chien Y K, Yen C F. J. Electrochem. Soc., 2011, 158: D286-D289
[12] Zhou X, Gu S, Wu Z, Zhu S, Ye J, Liu S, Zhang R, Shi Y, Zheng Y D. Appl. Surface Sci., 2006, 253: 2226-2229
[13] Ling B, Sun X W, Zhao J L, Tan S T, Dong Z L, Yang Y, Yu H Y, Qi K C. Phys. E, 2009, 41: 635-639
[14] Fu H K, Cheng C L, Wang C H, Lin T Y, Chen Y F. Adv. Funct. Mater., 2009, 19: 3471-3475
[15] Venkatachalam S, Kanno Y. Current Appl. Phys., 2009, 9: 1232-1236
[16] Lee J Y, Lee J H, Kim H S, Lee C H, Ahn H S, Cho H K, Kim Y Y, Kong B H, Lee H S. Thin Solid Films, 2009, 517: 5157-5160
[17] Nadarajah A, Word R C, Meiss J, Konenkamp R. Nano Lett., 2008, 8: 534-537
[18] Sun X W, Huang J Z, Wang J X, Xu Z. Nano Lett., 2008, 8: 1219-1223
[19] Taguchi T. IEEJ Trans, 2008, 3: 21-26
[20] Guo H H, Lin Z H, Feng Z F, Lin L L, Zhou J Z. J. Phys. Chem. C, 2009, 113: 12546-12550
[21] Djurii Dc' A B, Ng A M C, Chen X Y. Prog. Quant. Electron., 2010, 34: 191-259
[22] Choi Y S, Kang J W, Hwang D K, Park S J. IEEE Trans. Elect. Dev., 2010, 57: 26-41
[23] David C L. J. Elect. Mater., 2005, 35: 1299-1305
[24] 叶志镇 (Ye Z Z), 曾昱嘉 (Zeng Y J), 卢洋藩 (Lu Y F), 何海平 (He H P). 中国科技论文在线 (Science Paper Online), 2007, 2 (5): 317-319
[25] 杨广武 (Yang G W),张海明 (Zhang H M),陈国相 (Chen G X).中国材料科技与设备(Chinese Materials Science Technology & Equipment), 2007, (1): 35-37
[26] Yamauchi S, Goto Y, Hariu T. J. Cryst. Growth., 2004, 260: 1-6
[27] Guo X L, Tabata H, Kawai T. Cryst. Growth, 2002, 237/239: 544-547
[28] Alvi N H, Willander M, Nur O. Superlattices Microstruct., 2010, 47: 754-761
[29] Kishwar S, Hasan K, Tzamalis G, Nur O, Willander M, Kwack H S, Dang D L S. Phys. Status Solidi (a), 2010, 207: 67-72
[30] Alvi N H, ul Hasan K, Nur O, Willander M. Nanoscale Res. Lett., 2011, 6: art. no. 130-136
[31] Bano N, Hussain I, Nur O, Willander M, Klason P, Henry A. Semicond. Sci. Technol., 2009, 24: art. no. 125015
[32] Kishwar S, Hasan K, Alvi N H, Klason P, Nur O, Willander M. Superlattices Microstruct., 2011, 49: 32-42
[33] Alvi N H, Usman A S M, Hussain S, Nur O, Willander M. Scripta Mater., 2011, 64: 697-700
[34] Willander M, Nur O, Bano N, Sultana K. New J. Phys., 2009, 11: art. no. 125020
[35] Sadaf J R, Israr M Q, Kishwar S, Nur O, Willander M. Nanoscale Res. Lett., 2010, 5: 957-960
[36] Alvi N H, Riaz M, Tzamalis G, Nur O, Willander M. Semicond. Sci. Technol., 2010, 25: art. no. 065004
[37] Willander M, Asif M H, Zaman S, Zainelabdin A, Bano N, Al-Hilli S M, Nur O. Phys. Status Solidi (c), 2009, 6 (12): 2683-2694
[38] Willander M, Nur O. Journal of Jilin Normal University (Natural Science Edition), 2009, (3): 1-10
[39] Chen C H, Chang S J, Chang S P, Li M J, Chen I C, Hsueh T J, Hsu A D, Hsu C L. J. Phys. Chem. C, 2010, 114: 12422-12426
[40] Ahn C H, Han W S, Kong B H, Cho H K. Nanotechnology, 2009, 20: art. no. 015601
[41] Le H Q, Lim S K, Goh G K L, Chua S J, Ang N S S, Liu W. Appl. Phys. B, 2010, 100: 705-710
[42] Le H Q, Chua S J. J. Phys. D: Appl. Phys., 2011, 44: art. no. 125104
[43] Tan S T, Zhao J L, Iwan S, Sun X W, Tang X H, Ye J D, Bosman M, Tang L J, Lo G Q, Teo K L. Electron Dev., 2010, 57(1): 129-133
[44] Thiyagarajan P, Kottaisamy M, Rama N, Ramachandra R M S. Scripta Mater., 2008, 59: 722-725
[45] Sessolo M, Bolink H J. Adv. Mater., 2011, 23: 1829-1845
[46] Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F. Nanotechnology, 2009, 20: art. no. 425202
[47] Wadeasa A, Tzamalis G, Sehati P, Nur O, Fahlman M, Willander M, Berggren M, Crispin X. Chem. Phys. Lett., 2010, 490: 200-204
[48] Willander M, Nur O, Zaman S, Zainelabdin A, Bano N, Hussain I. J. Phys. D: Appl. Phys., 2011, 44: art. no. 224017
[49] Zaman S, Zainelabdin A, Amin G, Nur O, Willander M. Appl. Phys. A, 2011, 104: 1203-1209
[50] Zainelabdin A, Zaman S, Amin G, Nur O, Willander M. Nanoscale Res. Lett., 2010, 5: 1442-1448
[51] Son D I, You C H, Kim W T, Kim T W. Nanotechnology, 2009, 20: art. no. 365206
[52] Bano N, Zaman S, Zainelabdin A, Hussain S, Hussain I, Nur O, Willander M. J. Appl. Phys., 2010, 108: art. no. 043103
[53] Dai Q Q, Duty C E, Hu M Z. Small, 2010, 6: 1577-1588
[54] Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y. Mater. Sci. Eng. R., 2010, 71: 1-34
[55] Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H. Phys. Status Solidi (b), 2010, 247: 1424-1447
[56] Uthirakumar P, Hong C H, Suh E K, Lee Y S. Chem. Mater., 2006, 18: 4990-4992
[57] Uthirakumar P, Lee Y S, Suh E K, Hong C H. J. Lumin., 2008, 128: 287-296
[58] Sharma P K, Dutta R K, Kumar M, Singh P K, Pandey A C, Singh V N. IEEE Trans. Nanotechnology, 2011, 10: 163-169
[59] Sharma P K, Kumar M, Pandey A C. J. Nano. Res., 2011, 13: 1629-1637
[60] Dai J, Ji Y, Xu C X, Sun X W, Leck K S, Ju Z G. Appl. Phys. Lett., 2011, 99: art. no. 063112
[1] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[2] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[3] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[4] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[5] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[6] Liu Jie, Jiang Man, Mei Yongmei, Wu Zhanchao*, Kuang Shaoping. Single-Phased White Phosphor for White Light Emitting Diodes [J]. Progress in Chemistry, 2013, 25(12): 2068-2079.
[7] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.
[8] Zhang Chi, Liu Zhitian, Shen Zhi, Liu Jing. Polymer Light-Emitting Electrochemical Cell [J]. Progress in Chemistry, 2012, 24(07): 1359-1367.
[9] Zhou Lixia, Liu Shujuan, Zhao Qiang, Ling Qidan, Huang Wei. Light-Emitting Electrochemical Cells Based on Ionic Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2011, 23(9): 1871-1882.
[10] Zhang Qitu, Zhang Le, Han Pengde, Chen Yan, Yang Hao, Wang Lixi. Light Converting Inorganic Phosphors for White Light-Emitting Diodes [J]. Progress in Chemistry, 2011, 23(6): 1108-1122.
[11] Chen Bingkun, Zhong Haizheng, Zou Bingsuo. Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals [J]. Progress in Chemistry, 2011, 23(11): 2276-2286.
[12] . Optoelectronic Properties and Applications of Optically Active Binaphthol Derivatives [J]. Progress in Chemistry, 2010, 22(10): 1973-1982.
[13] Zhu Chongqiang Yang Chunhui Sun Liang. the Research of Point Defects in CdGeAs2 Nonlinear Optical Crystals [J]. Progress in Chemistry, 2010, 22(0203): 315-321.
[14] Ying Lei Zhang Anqi Yang Wei Cao Yong. Electrophosphorescent Light-Emitting Polymers [J]. Progress in Chemistry, 2009, 21(6): 1275-1286.
[15] Jiang Hongji|Huang Wei**. Single Component White Light Electroluminescent Materials and Devices [J]. Progress in Chemistry, 2008, 20(04): 538-547.
Viewed
Full text


Abstract

Zinc Oxide for White Light Emitting Diode