中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Tin-Based Alloy Anode Materials for Lithium Ion Batteries

Chu Daobao1, Li Jian1, Yuan Ximei1,2, Li Zilong1, Wei Xu1, Wan Yong1   

  1. 1. Anhui Key Laboratory of Functional Molecular Solids and Molecule Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;
    2. Nanling Hengchang Cuprum Foil Corporation Limited, Nanling 241300, China
  • Received: Revised: Online: Published:
PDF ( 1474 ) Cited
Export

EndNote

Ris

BibTeX

Development of high safety, high energy, low cost and long service life Li ion rechargeable batteries is current a tremendous challenge for power battery application. The performance of the battery mainly depends on the nature of anode and cathode materials.Tin-based alloy is an industrially promising anode material for lithium ion batteries due to its high energy capacity and safety characteristics. In this review, the recent progress in Sn-based alloy anode materials for lithium ion batteries are reviewed.The different preparation methods of Sn-based alloy anodes are summarized. This review focuses on the problems in electrochemical properties of the Sn-based alloy anode and their causes, including the effect of loss of active material, SEI film and oxide film formation, aggregation of alloy particles and generation of dead lithium in the process of the intercalation of lithium ions on the charge and discharge performance of the alloy anode. The research trends in improving the electrochemical performance of the Sn-based alloy anode are prospected. Contents 1 Introduction
2 Preparation methods of Sn-based alloy anodes
2.1 Chemical reduction method
2.2 High energy ball milling method
2.3 Electro-deposition method
2.4 Hydrothermal method
2.5 Magnetron sputter plating method
2.6 Plasma reaction method
3 Cause of irreversible capacity and cyclic capacity fade
3.1 Loss of active material in Sn-based alloy anodes
3.2 SEI film and oxide film formation on surface of grain boundary
3.3 Aggregation of alloy particles
3.4 Generation of dead lithium
4 Approaches for improving anode performance
4.1 Multiphase matrix composites
4.2 Porous structure electrodes
4.3 Nano-structure electrodes
4.4 Preparation of thin film
5 Conclusions and outlook

CLC Number: 

[1] Goodenough J B, Kim Y. Chem. Mater., 2010, 22: 587-603
[2] Hu Y S, Guo Y G, Dominko R, Gaberscek M, Jamnik J, Maier J. Adv. Mater., 2007, 19: 1963-1966
[3] 褚道葆 (Chu D B), 李艳 (Li Y), 宋奇(Song Q),周莹(Zhou Y). 物理化学学报(Acta Physico-Chimica Sinica), 2011,27(8) : 1863-1867
[4] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Science, 1997, 276: 1395-1397
[5] Winter M, Besenhard J O. Electrochim. Acta, 1999, 45: 31-50
[6] Zhang C Q, Tu J P, Huang X H,Yuan Y F, Wang S F, Mao F. J. Alloys Compd., 2008, 457: 81-85
[7] Cui W J, Wang F, Wang J, Liu H J, Wang C X, Xia Y Y. J. Power Sources, 2011, 196: 3633-3639
[8] Ju S H, Jang H C, Kang Y C. J. Power Sources, 2009, 189: 163-168
[9] Yang R, Huang J, Zhao W, Lai W Z, Zhang X Z, Zheng J, Li X G. J. Power Sources, 2010, 195: 6811-6816
[10] Wolfenstine J, Campos S, Foster D, Read J, Behl W K. J. Power Sources, 2002, 109: 230-233
[11] Alcántara R, Rodríguez I, Tirado J L. ChemPhysChem, 2008, 9: 1171-1177
[12] Wang Z,Tian W, Liu X, Yang R, Li X G. J. Solid State Chem., 2007, 180: 3360-3365
[13] Xia Z P, Lin Y, Li Z Q. Mater. Charact., 2008, 59: 1324-1328
[14] Ehrlich G M, Durand C, Chen X, Hugener T A, Spiess F, Suib S L. J. Electrochem. Soc., 2000, 147: 886-891
[15] Hassoun J, Mulas G, Panero S, Scrosati B. Electrochem. Commun., 2007, 9: 2075-2081
[16] Wang G X, Sun L, Bradhurst D H, Dou S X, Liu H K. J. Alloys Compd., 2000, 299: 12-15
[17] Wolfenstine J, Campos S, Foster D, Read J, Behl W K. J. Power Sources, 2002, 109: 230-233
[18] Kasavajjula U, Wang C, Appleby A J. J. Power Sources, 2007, 163: 1003-1039
[19] Gnanamuthu R M, Lee C W. Mater. Sci. Eng. B, 2011, 176: 1329-1332
[20] Ke F S, Huang L, Jiang H H, Wei H B, Yang F Z, Sun S G. Electrochem. Commun., 2007, 9: 228-232
[21] Hassoun J, Panero S, Simon P, Taberna P L, Scrosati B. Adv. Mater., 2007, 19: 1632-1635
[22] Wang Y X, Huang L, Chang Y Q, Ke F S, Li J T, Sun S G. Electrochem. Commun., 2010, 12: 1226-1229
[23] Fan X Y, Kea F S, Wei G Z, Huang L, Sun S G. J. Alloys Compd., 2009, 476: 70-73
[24] Jiang D D, Tian H Y, Qiu C C, Ma X H, Fu Y B. J. Solid State Electrochem., 2010, doi 10.1007/s10008-010-1251-1
[25] Xue L J, Xu Y F, Huang L, Ke F S, He Y, Wang Y X, Wei G Z, Li J T, Sun S G. Electrochim. Acta, 2011, 56: 5979-5987
[26] Huang L, Yang Y, Xue L J, Wei H B, Ke F S, Li J T, Sun S G. Electrochem. Commun., 2009, 11: 6-9
[27] He J C, Zhao H L, Wang J, Wang J, Chen J B. J. Alloys Compd., 2010, 508: 629-635
[28] Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q. Acta Metall Sin., 2010, 23: 363-369
[29] Wang Z, Tian W H, Li X G. J. Alloys Compd., 2007, 439: 350-354
[30] Kim H, Choi J H, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401-4405
[31] Yang J, Wachtler M, Winter M, Besenhard J O. Electrochem. Solid-State Lett., 1999, 2: 161-163
[32] Wachtler M, Winter M, Besenhard J O. J. Power Sources, 2002, 105: 151-160
[33] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94: 189-193
[34] Kim J W, Ryu J H, Lee K T, Oh S M. J. Power Sources, 2005, 147: 227-233
[35] Wang C S, Appleby A J, Little F E. J. Power Sources, 2001, 93: 174-185
[36] Vaughey J T, Fransson L, Swinger H A, Edström K, Thackeray M M. J. Power Sources, 2003, 119/121: 64-68
[37] Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A137-A140
[38] Kepler K D, Vaughey J T, Thackeray M M. J. Power Sources, 1999, 81/82: 383-387
[39] Ulus A, Rosenberg Y, Burstein L, Peled E. J. Electrochem. Soc., 2002, 149: A635-A643
[40] Li H, Shi L, Lu W, Huang X, Chen L. J. Electrochem. Soc., 2001, 148: A915-A922
[41] Ota H, Sato T, Suzuki H, Usami T. J. Power Sources, 2001, 97/98: 107-113
[42] Li H, Huang X, Chen L. Electrochem. Solid-State Lett., 1998, 1: 241-245
[43] Alcantara R, Fernandez-Madrigal F J, Lavela P, Tirado J L, Jumas J C, Olivier-Fourcade J. J. Mater. Chem., 1999, 9: 2517-2521
[44] Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey J T, Thackeray M M, Edstrom K. Electrochim. Acta, 2007, 52: 4947-4955
[45] Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ionics, 2002, 148: 405-416
[46] Li J T, Swiatowska J, Seyeux A, Huang L, Maurice V, Sun S G, Marcus P. J. Power Sources, 2010, 195: 8251-8257
[47] Li J Z, Li H. J. Power Sources, 1999, 81/82: 335-339
[48] Kim S P, van Duin A C T, Shenoy V B. J. Power Sources, 2011, 196: 8590- 8597
[49] Yang C R, Song J Y, Wang Y Y, Wan C C. J. Appl. Electrochem., 2000, 30: 29-34
[50] Kim J H, Jeong G J, Kim Y W, Sohn H J, Park C W, Lee C K. J. Electrochem. Soc., 2003, 150: A1544-A1547
[51] Huang Z W, Hu S J, Hou X H, Ru Q, Yu H W, Zhao L Z, Li W S. Chin. Sci. Bull., 2009, 54: 1003-1008
[52] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401-4405
[53] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M. J. Power Sources, 2003, 119/121: 604-609
[54] Ferguson P P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2010, 157: A326-A332
[55] Huang Z W, Hu S J, Hou X H, Ru Q, Yu H W, Zhao L Z, Li W S. Chin. Sci. Bull., 2009, 54: 1003-1008
[56] Li H, Shi L, Wang Q, Chen L, Huang X. Solid State Ionics, 2002, 148: 247-258
[57] Matsuno S, Noji M, Kashiwagi T, Nakayama M, Wakihara M. J. Phys. Chem. C, 2007, 111: 7548-7553
[58] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135: 181-191
[59] Sharma S, Fransson L, Sjostedt E, Nordstrom L, Johansson B, Edstrom K. J. Electrochem. Soc., 2003, 150: A330-A334
[60] Lee S J, Lee H Y, Jeong S H, Baik H K, Lee S M. J. Power Sources, 2002, 111: 345-349
[61] Shin H C, Liu M. Adv. Funct. Mater., 2005, 15: 582-586
[62] Tamura N, Fujimoto M, Kamino M, Fujitani S. Electrochim. Acta, 2004, 49: 1949-1956
[63] Fang L, Chowdari B V R. J. Power Sources, 2001, 97/98: 181-184
[64] Guo H, Zhao H, Jia X. Electrochem. Commun., 2007, 9: 2207-2211
[65] Cheng X Q, Shi P F. J. Alloys Compd., 2005, 391: 241-244
[66] Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T. Electrochem. Solid-State Lett., 2003, 6: A218-A220
[67] Kim Y L, Lee H Y, Jang S W, Lee S J, Baik H K, Yoon Y S, Park Y S, Lee S M. Solid State Ionics, 2003, 160: 235-240
[68] Kim D G, Kim H, Sohn H J, Kang T. J. Power Sources, 2002, 104: 221-225
[69] Zhao H P, Jiang C Y, He X M, Ren J G, Wan C R. Ionics, 2008, 14: 113-120
[70] Ke F S, Huang L, Wei H B, Cai J S, Fan X Y, Yang F Z, Sun S G. J. Power Sources, 2007, 170: 450-455
[71] Kim H, Cho J. Electrochim. Acta, 2007, 52: 4197-4201
[72] Xie J, Zhao X B, Cao G S, Tu J P. J. Power Sources, 2007, 164: 386-389
[73] Guo H, Zhao H, Jia X, Li X, Qiu W. Electrochim. Acta, 2007, 52: 4853-4857
[74] Dahn J R, Mar R E, Abouzeid A. J. Electrochem. Soc., 2006, 153: A361-A365
[75] Ortiz G F, Alcantara R, Rodriguez I, Tirado J L. J. Electroanal. Chem., 2007, 605: 98-108
[76] Lee H Y, Jang S W, Lee S M, Lee S J, Baik H K. J. Power Sources, 2002, 112: 8-12
[77] Shen D, Yang S B, Wu X G, Mi H. Chem. J. Chin. Univ., 2011, 32(10): 2367-2370
[78] Dong Q F, Wu C Z, Jin M G, Huang Z C, Zheng M S, You J K, Lin Z G. Solid State Ionics, 2004, 167: 49-54
[79] Vītina I, Belmane V, Krūmina A, Rubene V. Surf. Coat. Technol., 2011, 205: 2893-2898
[80] Mulas G, Enzo S, Minella C B, Arca E, Gerbaldi C, Penazzi N, Bodoardo S, Hassoun J, Panero S. J. Solid State Electrochem., 2009, 13: 239-243
[81] Yang J, Takeda Y, Imanishi N, Yamamoto O. J. Electrochem. Soc., 1999, 146: 4009-4013
[82] Yang J, Winter M, Besenhard J O. Solid State Ionics, 1996, 90: 281-287
[83] Wang F, Zhao M, Song X. J. Power Sources, 2008, 175: 558-563
[84] Fernandez-Madrigal F J, Lavela P, Vicente C P, Tirado J L, Jumas J C, Olivier-Fourcade J. Chem. Mater., 2002, 14: 2962-2968
[85] Mukaibo H, Osaka T, Reale P, Panero S, Scrosati B, Wachtler M. J. Power Sources, 2004, 132: 225-228
[86] Yang J, Takeda Y, Imanishi N, Xie J Y, Yamamoto O. Solid State Ionics, 2000, 133: 189-194
[87] Park C M, Sohn H J. Electrochim. Acta, 2009, 54: 6367-6372
[88] Zhao J, Wang L, He X, Wan C, Jiang C. Electrochim. Acta, 2008, 53: 7048-7053
[89] Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W. J. Electrochem. Soc., 2003, 150: A1102-A1107
[90] Luo Q, Liu Z J, Li L, Xie S H, Kong J L, Zhao D. Adv. Mater., 2001, 13: 286-289
[91] Jung H R, Kim E J, Park Y J, Shin H C. J. Power Sources, 2011, 196: 2122-2127
[92] Yoshio M, Tsumura T, Dimov N. J. Power Sources, 2005, 146: 10-14
[93] Huang L, Wei H B, Ke F S, Fan X Y, Li J T, Sun S G. Electrochim. Acta, 2009, 54: 2693-2698
[94] Fan X Y, Zhuang Q, Wei G, Huang L, Dong Q, Sun S G. J. Appl. Electrochem., 2009, 39: 1323-1330
[95] Nishikawa K, Dokko K, Kinoshita K, Woo S W, Kanamura K. J. Power Sources, 2009, 189: 726-729
[96] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y. Nat. Nanotechnol., 2008, 3: 31-35
[97] Aberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5: 567-573
[98] Duan H N, Gnanaraj J, Chen X P, Li B Q, Liang J Y. J. Power Sources, 2008, 185: 512-518
[99] Besenhard J O, Yang J, Winter M. J. Power Sources, 1997, 68: 87-90
[100] Courtney I A, Dahn J R. J. Electrochem. Soc., 1997, 144: 2943-2948
[101] Pereira N, Klein L C, Amatucci G G. Solid State Ionics, 2004, 167: 29-40
[102] Aricò A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nat. Mater., 2005, 4: 366-377
[103] Winter M, Besenhard J O, Spahr M E, Novak P. Adv. Mater., 1998, 10: 725-763
[104] Kim I, Blomgren G E, Kumta P N. Electrochem. Solid-State Lett., 2003, 6: A157-A161
[105] Todd A D W, Ferguson P P, Barker J G, Fleischauer M D, Dahn J R. J. Electrochem. Soc., 2009, 156: A1034-A1040
[106] Beaulieu L Y, Larcher D, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2000, 147: 3206-3212
[107] Besenhard J O, Yang J, Winter M. J.Power Sources, 1997, 68: 87-90
[108] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. J. Power Sources, 2004, 129: 270-274
[109] Chen L B, Xie J Y, Yu H C, Wang T H. J. Appl. Electrochem., 2009, 39: 1157-1162
[110] Hatchard T D, Obrovac M N, Dahn J R. J. Electrochem. Soc., 2006, 153: A282-A287
[111] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Electrochem. Commun., 2003, 5: 544-548
[112] Takamura T, Uehara M, Suzuki J, Sekine K, Tamura K. J. Power Sources, 2006, 158: 1401-1404
[113] Moon T, Kim C, Park B. J. Power Sources, 2006, 155: 391-394
[1] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[4] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[5] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[6] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[7] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[8] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[9] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[10] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[11] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[12] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[13] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[14] Li Jiaoyang, Wang Li, He Xiangming. Phosphorus-Based Composite Anode Materials for Secondary Batteries [J]. Progress in Chemistry, 2016, 28(2/3): 193-203.
[15] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.