中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Polyanion-Type Cathode Materials for Li-Ion Batteries

Wang Fuqing1,2, Chen Jian1, Zhang Feng1, Yi Baolian1   

  1. 1. Advanced Rechargeable Batteries Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 1629 ) Cited
Export

EndNote

Ris

BibTeX

Polyanion-type materials are considered as one of the most promising cathode materials for power batteries due to the good safety, low cost and environmental benign of the materials. However, the commercial application of this kind of material is hindered by the poor rate capability and low-temperature performance caused by the low electronic and ionic conductivity of the materials. Recently, the electrochemical performances of the materials have been improved to a certain extend by coating the material particles with carbon or conductive polymer, doping the compounds with foreign metal ions, and preparing the nano-structured materials. And the commercial applications of LiFePO4 in power batteries have been successfully achieved.In this paper, the recent progress on the polyanion-type cathode materials, including silicates and sulfates which have become the research focus again, are reviewed. The crystal structure, synthesis and modification process, electrochemical characteristics, safety of the material, as well as the technical bottlenecks in the actual applications are discussed. The possible approaches to improve the output performance of the materials and the development trends of the polyanion-type cathode materials are also discussed and prospected. Contents 1 Introduction
2 Crystal structure, preparation, and electrochemical characteristic of polyanion-type cathode materials
2.1 Phosphates
2.2 Silicates
2.3 Sulfates
3 Strategies to improve the electrochemical performance of polyanion-type cathode materials
4 Safety of polyanion-type cathode materials
5 Complex/blend cathode materials
6 Conclusion and prospects

CLC Number: 

[1] Yamada A, Chung S C, Hinokuma K. J. Electrochem. Soc., 2001, 148 (3): A224-A229
[2] Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, Yamaki J. Solid State Ionics, 1996, 92: 1-10
[3] Sadi M Y, Barker J, Huang H, Swoyer J L, Adamson G. Electrochem. Solid-State Lett., 2002, 5 (7): A149-A151
[4] Dominko R. J. Power Sources, 2008, 184 (2): 462-468
[5] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188-1194
[7] Whittingham M S. Chem. Rev., 2004, 104: 4271-4301
[8] Konarova M, Taniguchi L. Powder Technol., 2009, 191: 111-116
[9] Kang B W, Ceder G. Nature, 2009, 458: 190-193
[10] Huang Y H, Ren H B, Peng Z H, Zhou Y H. Electrochim. Acta, 2009, 55: 311-315
[11] Sun C S, Zhou Z, Xu Z G, Wang D G, Wei J P, Bian X K, Yan J. J. Power Sources, 2009, 193: 841-845
[12] Zou H L, Zhang G H, Shen P K. Mater. Res. Bull., 2010, 45: 149-152
[13] Yang S L, Zhou X F, Zhang J G, Liu Z P. J. Mater. Chem., 2010, 20: 8086-8091
[14] Kuwahara A, Suzuki S, Miyayama M. J. Electroceram., 2010, 24: 69-75
[15] Ni J F, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T. J. Power Sources, 2010, 195: 2877-2882
[16] Xu Z H, Xu L, Lai Q Y, Ji X Y. Mater. Res. Bull., 2007, 42: 883-891
[17] Liu Y Y, Cao C B, Li J. Electrochim. Acta, 2010, 55: 3921-3926
[18] Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10-13
[19] Wu L, Li X H, Wang Z X, Li L J, Zheng J C, Guo H J, Hu Q Y, Fang J. J. Power Sources, 2009, 189: 681-684
[20] 朱先军(Zhu X J), 刘云霞(Liu Y X), 耿良梅(Geng L M), 程龙兵(Cheng L B). 电池(Battery Bimonthly), 2007, 37(5): 390-393
[21] Zhong S K, Liu L T, Liu J Q, Wang J, Yang J W. Solid State Commun., 2009, 149: 1679-1683
[22] Huang J S, Yang L, Liu K Y, Tang Y F. Electrochim. Acta, 2010, 195: 5013-5018
[23] Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Chem. Mater., 2000, 12: 3240-3242
[24] Yin S C, Grondey H, Strobel P, Huang H, Nazar L F. J. Am. Chem. Soc., 2003, 125: 326-327
[25] Huang H, Yin S C, Kerr T, Talyor N, Nazar L F. Adv. Mater., 2002, 14: 1525-1528
[26] Chang X Y, Wang Z X, Li X H, Zhang L, Guo H J, Peng W J. Mater. Res. Bull., 2005, 40: 1513-1520
[27] Martha S K, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners J H, Exnar I, Kay A, Markovsky B, Aurbach D. Angew. Chem. Int. Ed., 2009, 48: 8559-8563
[28] Kwon N H, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M. Electrochem. Solid-State Lett., 2006, 9(6): A277-A280
[29] Xu J, Chen G, Li H J, Lv Z S. J. Appl. Electrochem., 2010, 40: 575-580
[30] Bakenov Z, Taniguchi I. Electrochem. Commun., 2010, 12: 75-78
[31] Yamada A, Hosoya M, Chung S C, Kudo Y, Hinokuma K, Liu K Y, Nishi Y. J. Power Sources, 2003, 119/121: 232-238
[32] Lee J W, Park M S, Anass B, Park J H, Paik M S, Doo S G. Electrochim. Acta, 2010, 55: 4162-4169
[33] Zhou F, Cococcioni M, Kang K, Ceder G. Electrochem. Commun., 2004, 6: 1144-1148
[34] Li G H, Azuma H, Tohda M. Electrochem. Solid-State Lett., 2002, 5(6): A135-A137
[35] Okada S, Sawa S, Egashira M, Yamaki J I, Tabuchi M, Kageyama H, Konishi T, Yoshino A. J. Power Sources, 2001, 97/98: 430-432
[36] Amine K, Yasuda H, Yamachi M. Electrochem. Solid-State Lett., 2000, 3(4): 178-179
[37] Yang J S, Xu J J. J. Electrochem. Soc., 2006, 153(4): A716-A723
[38] Li H H, Jin J, Wei J P, Zhou Z, Yan J. Electrochem. Commun., 2009, 11: 95-98
[39] Zhao Y S, Wang S J, Zhao C S, Xia D G. Rare Metals, 2009, 28(2): 117-121
[40] Barker J, Saidi M Y, Swoyer J L. J. Electrochem. Soc., 2003, 153(10): A1394-A1398
[41] Reddy M V, Rao G V S, Chowdari B V R. J. Power Sources, 2010, 195: 5768-5774
[42] Wu S Q, Zhu Z Z, Yang Y, Hou Z F. Comput. Mater. Sci., 2009, 44: 1243-1251
[43] Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O. Electrochem. Commun., 2005, 7: 156-160
[44] Politaev V V, Petrenko A A, Nalbandyan V B, Medvedev B S, Shvetsova E S. J. Solid State Electrochem., 2007, 180: 1045-1050
[45] Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A. J. Am. Chem. Soc., 2008, 130: 13212-13213
[46] Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O. J. Mater. Chem., 2006, 16: 2266-2272
[47] Gong Z L, Li Y X, He G N, Li J, Yang Y. Electrochem. Solid-State Lett., 2008, 11(5): A60-A63
[48] Deng C, Zhang S, Fu B L, Yang S Y, Ma L. Mater. Chem. Phys., 2010, 120: 14-17
[49] Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q. J. Phys. Chem. C, 2010, 114: 3693-3700
[50] Zhang S, Deng C, Yang S Y. Electrochem. Solid-State Lett., 2009, 12(7): A136-A139
[51] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010, 22: 5754-5761
[52] Dominko R, Bele M, Gaber ek M, Meden A, Remkar M, Jamnik J. Electrochem. Commun., 2006, 8: 217-222
[53] Liu W G, Xu Y H, Yang R. J. Alloys Compd., 2009, 480: L1-L4
[54] Li Y X, Gong Z L, Yang Y. J. Power Sources, 2007, 174: 528-532
[55] Gong Z L, Li Y X, Yang Y. Electrochem. Solid-State Lett., 2006, 9(12): A542-A544
[56] Belharouak I, Abouimrane A, Amine K. J. Phys. Chem. C, 2009, 113: 20733-20737
[57] Deng C, Zhang S, Yang S Y. J. Alloys Compd., 2009, 487: L18-L23
[58] Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J. Chem. Mater., 2007, 19: 3633-3640
[59] Martha S K, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I. J. Electrochem. Soc., 2009, 156(7): A541-A552
[60] Lyness C, Delobel B, Armstrong A R, Bruce P G. Chem. Commun., 2007, 4890-4892
[61] Okada S, Yamaki J I. J. Ind. Eng. Chem., 2004, 10(7): A1104-A1113
[62] Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, Yamaki J. Solid State Ionics, 1996, 92: 1-10
[63] Recham N, Chotard J N, Dupont L, Delacourt C, Walker W, Armand M, Tarascon J M. Nature Materials, 2010, 9: 68-74
[64] Barpanda P, Recham N, Chotard J N, Djellab K, Walker W, Armand M, Tarascon J M. J. Mater. Chem., 2010, 20: 1659-1668
[65] Gabrish H, Wilcox J D, Doeff M M. Electrochem. Solid-State Lett., 2006, 9(7): A360-A363
[66] Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Electrochim. Acta, 2007, 52: 5281-5285
[67] Chung S Y, Bloking J, Chiang Y M. Nature Materials, 2002, 1: 123-128
[68] 王兆翔(Wang Z X), 陈立泉(Chen L Q). 电源技术(Chinese Journal of Power Sources), 2008, 132(5): 287-292
[69] Islam M S, Driscoll D J, Fisher C A J, Slater P R. Chem. Mater., 2005, 17: 5085-5092
[70] Herle P S, Ellis B, Coombs N, Nazar L F. Nature Materials, 2004, 3: 147-152
[71] Li H, Shi L H, Wang Q, Chen L Q, Huang X J. Solid State Ionics, 2002, 148: 247-258
[72] Wang F Q, Chen J, Wu M H, Yi B L. Ionics, DOI: 10.1007/s11581-012-0780-2
[73] Qian J F, Zhou M, Cao Y L, Ai X P, Yang H X. J. Phys. Chem. C, 2010, 114: 3477-3482
[74] Chen G Y, Richardson T J. J. Power Sources, 2010, 195: 1221-1224
[75] Joachin H, Kaun T D, Zaghib K, Prakash J. J. Electrochem. Soc., 2009, 156(6): A401-A406
[76] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191: 575-581
[77] Sadi M Y, Barker J, Huang H, Swover J L, Adamson G. J. Power Sources, 2003, 119/121: 266-272
[78] Gover R K B, Burns P, Bryan A, Saidi M Y, Swoyer J L, Barker J. Solid State Ionics, 2006, 177: 2635-2638
[79] MacNeil D D, Lu Z H, Chen Z H, Dahn J R. J. Power Sources, 2002, 108: 8-14
[80] Wang H, Zhang W D, Zhu L Y, Chen M C. Solid State Ionics, 2007, 178: 131-136
[81] Kim W S, Kim S B, Jang I C, Lim H H, Lee Y S. J. Alloys Compd., 2010, 492: L87-L90
[82] 高旭光(Gao X G), 胡国荣(Hu G R), 彭忠东(Peng Z D), 万烨(Wan Y), 杜柯(Du K), 刘艳君(Liu Y J). 电源技术(Chinese Journal of Power Sources), 2007, 131: 881-884
[1] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[2] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[3] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[4] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[5] Zenghua Chang, Jiantao Wang, Zhaohui Wu, Jinling Zhao, Shigang Lu. Concentrated Electrolyte for Lithium/Li-Ion Batteries [J]. Progress in Chemistry, 2018, 30(12): 1960-1974.
[6] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[7] Ning Zhang, Ying Li. Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications [J]. Progress in Chemistry, 2017, 29(4): 373-387.
[8] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[9] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[10] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[11] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[12] Li Feihu, Nie Dongyang. Iron-Based Inorganic Mesoporous Materials [J]. Progress in Chemistry, 2014, 26(06): 961-975.
[13] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[14] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[15] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.