中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Nanobubbles on the Immersed Substrates

Li Dayong1,2, Wang Weijie1, Zhao Xuezeng1   

  1. 1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Mechanical Engineering, Heilongjiang Institute of Science and Technology, Harbin 150027, China
  • Received: Revised: Online: Published:
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

Surface nanobubbles is one significant discovery in interfacial physics in recent decade. Scientists have confirmed their existence since the surface nanobubbles were observed by using atomic force microscope (AFM). Studies of nanobubbles' properties and influence factors have been developed deeply because of its potential applications in microelectromechanical system (MEMS), micro biochemical system, hydrodynamics, surface science, etc. The stability (abnormal longevity ) of nanobubbles, however, is still one of open questions. The latest research results of nanobubbles' stability are mainly reviewed in this paper, including line tension theory, dynamic balance theory, impurity theory and Knudsen gas type theory. Additionally, the applications, influences and formation of nanobubbles are sketchily introduced. In the end, we give some suggestions on what still needs to be done to obtain a full understanding of nanobubbles. Contents 1 Introduction
2 Formation and influence factors of nanobubbles
2.1 Formation of nanobubbles
2.2 Influence factors of nanobubbles
3 Stability of nanobubbles
3.1 Line tension theory
3.2 Dynamic balance theory
3.3 Impurity theory
3.4 Knudsen gas type theory
4 Applications of nanobubbles
5 Conclusion and outlook

CLC Number: 

[1] Parker J L, Claesson P M, Attard P. J. Phys. Chem., 1994, 98: 8468-8480
[2] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J. J. Vac. Sci. Technol. B, 2000, 18, 2573-2575
[3] Ishida N, Inoue T, Miyahara M, Higashitani K. Langmuir, 2000, 16: 6377-6380
[4] Hampton M A, Nguyen A V. Advances in Colloid and Science, 2010, 154: 30-55
[5] 张雪花(Zhang X H), 胡钧(Hu J). 化学进展(Progress in Chemistry), 2004, 16 (5): 673-681
[6] Seddon J R T, Lohse D. J. Phys. Condensed Matter, 2011, 23(13): art. no. 133001
[7] Borkent B M, de Beer S S, Mugele F, Lohse D. Langmuir, 2010, 26(1): 260-268
[8] Zhang X H, Maeda N, Craig V S J. Langmuir, 2006, 22(11): 5025-5035
[9] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J. Langmuir, 2006, 22(19): 8109-8113
[10] Borkent B M, Schonherr H, Caer G L, Dollet B, Lohse D. Phys. Rev. E, 2009, 80: art. no. 036315
[11] Seddon J R T, Kooij E S, Poelsema B, Zandvliet H J W, Lohse D. Physical Review Letters, 2011, 106(5): art. no. 056101
[12] Ducker W A. Langmuir, 2009, 25(16): 8907-8910
[13] Zhang X H, Li G, Maeda N, Hu J. Langmuir, 2006, 22(22): 9238-9243
[14] Zhang L, Zhang X, Fan C, Zhang Y, Hu J. Langmuir, 2009, 25(16): 8860-8864
[15] Hampton M A, Nguyen A V. Miner. Eng., 2009, 22: 786-792
[16] 吴志华(Wu Z H), 张雪花(Zhang X H), 张晓东(Zhang X D), 孙洁林(Sun J L), 董亚明(Dong Y M), 胡钧(Hu J). 科学通报(Chinese Science Bulletin), 2007, 52(6): 629-634
[17] Wu Z H, Zhang X H, Zhang X D, Sun J L, Dong Y M, Hu J. Chin. Sci. Bull., 2007, 52(14): 1913-1919
[18] Tao Y J, Liu J T, Yu S, Tao D. Separation Science and Technology, 2006, 41(16): 3597-3607
[19] Zhou Z A, Chow R S, Cleyle P, Xu Z H, Masliyah J H. Canadian Metallurgical Quarterly, 2010, 49: 363-372
[20] Zhou Z A, Xu Z H, Finch J A, Masliyah J H, Chow R S. Miner. Eng., 2009, 22(5): 419-433
[21] Wang Y L, Bhushan B, Zhao X. Langmuir, 2009, 25(16): 9328-9336
[22] Wang Y L, Bhushan B. Soft Matter, 2010, 6: 29-66
[23] Holmberg M, Kuhle A, Garnaes J, Morch K A, Boisen A. Langmuir, 2003, 19(25): 10510-10513
[24] Yang J W, Duan J M, Fornasier D, Ralston J. Journal of Physical Chemistry B, 2003, 107(25): 6139-6147
[25] Li Z X, Zhang X H, Zhang L J, Zeng X C, Hu J, Fang H P. J. Phys. Chem. B, 2007, 111(31): 9325-9329
[26] Wang C L, Li Z X, Li J Y, Xiu P, Hu J, Fang H P. Chinese Physics B, 2008, 17(7): 2646-2654
[27] Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S, Lohse D. Langmuir, 2007, 23(13): 7072-7077
[28] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L, Hu J. Langmuir, 2004, 20(9): 3813-3185
[29] Zhang X H, Li G, Wu Z H, Zhang X D, Hu J. Chin. Phys., 2005, 14(9): 1774-1778
[30] Borkent B M, Dammer S M, Schonherr H, Vancso G J, Lohse D. Phys. Rev. Lett., 2007, 98: art. no. 204502
[31] Zhang X H, Khan A, Ducker W A. Phys. Rev. Lett., 2007, 98: art. no. 136101
[32] Yang S, Kooij E S, Poelsema B, Lohse D, Zandvliet H J W. Euro. Physics Letters, 2008, 81: art. no. 64006
[33] Yang S, Tsai P, Kooij E S, Prosperetti A, Zandvliet H J W, Lohse D. Langmuir, 2009, 25(3): 1466-1474
[34] Brenner M P, Lohse D. Phys. Rev. Lett., 2008, 101(21): art. no. 214505
[35] De Gennes P G. Langmuir, 2002, 18(9): 3413-3414
[36] 张立娟(Zhang L J). 中国科学院上海应用物理研究所博士学位论文(Doctoral Dissertation of Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2007
[37] Kunert C, Harting J, Vinogradova O I. Phys. Rev. Lett., 2010, 105: art. no. 016001
[38] Bazant M Z, Vinogradova O I. J. Fluid Mech., 2008, 613: 125-134
[39] Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. Nat. Mater., 2007, 6: 665-668
[40] Van Limbeek M A J, Seddon J R T. Langmuir, 2011, 27: 8694-8699
[41] Zhang X H, Quinn A, Ducker W A. Langmuir, 2008, 24(9): 4756-4764
[42] Yang J, Duan J, Fornasiero D, Ralston J. J. Phys. Chem. B, 2003, 107(25): 6139-6147
[43] Kameda N, Nakabayashi S. Jpn. J. Appl. Phys., 2008, 47(2): 1065-1067
[44] Zhang X H, Maeda N, Craig V S J. Langmuir, 2006, 22 (11): 5025-5035
[45] Jin F, Li J F, Ye X D, Wu C. J. Phys. Chem. B, 2007, 111(40): 11745-11749
[46] Seddon J R T, Zandvliet H J W, Lohse D. Physical Review Letters, 2011, 107(11): art. no. 116101
[47] Drelich J, Miller J D. Colloids and Surfaces, 1992, 69(1): 35-43
[48] Boruvka L, Neumann A W. J. Chem. Phys., 1977, 66(12): 5464-5482
[49] Mugele F, Becker T, Nikopoulos R, Kohonen M, Herminghaus S. Journal of Adhesion Science and Technology, 2002, 16(7): 951-964
[50] Grigera J R, Kalko S G, Fischbarg J. Langmuir, 1996, 12(1): 154-158
[51] Jensen M O, Mouritsen O G, Peters G H. J. Chem. Phys., 2004, 120(20): 9729-9744
[52] Mamatkulov S I, Khabibullaev P K, Netz R R. Langmuir, 2004, 20(11): 4756-4763
[53] Dammer S, Lohse D. Phys. Rev. Lett., 2006, 96(20): art. no. 206101
[54] Luzar A, Bratko D. J. Phys. Chem. B, 2005, 109(47): 22545-22552
[55] Bratko D, Luzar A. Langmuir, 2008, 24(4): 1247-1253
[56] Ball P. Nature, 2003, 423(6935): 25-26
[57] Leung K, Luzar A, Bratko D. Phys. Rev. Lett., 2003, 90(6): art. no. 065502
[58] Checco A, Schollmeyer H, Daillant J, Guenoun P, Boukherroub E. Langmuir, 2006, 22(1): 116-126
[59] Kameda N, Nakabayashi S. Surface Sci., 2008, 602(8): 1579-1584
[60] Das S, Snoeijer J H, Lohse D. Phys. Rev. E, 2010, 82(5): art. no. 056310
[61] Das S. Phys. Rev. E, 2011, 83: art. no. 066315
[62] 张立娟(Zhang L J), 陈浩(Chen H), 李朝霞(Li Z X), 方海平(Fang H P), 胡钧(Hu J). 中国科学G辑(Science in China Series G), 2007, 37(4): 556-560
[63] Darwich S, Mougin K, Vidal L, Gnecco E, Haidara H. Nanoscale, 2011, 3: 1211-1217
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[14] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[15] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
Viewed
Full text


Abstract

Nanobubbles on the Immersed Substrates