中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Highly Active and Highly Poison Tolerant Anodic Catalysts for Direct Formic Acid Fuel Cells

Lu Xueyi, Liao Shijun, Song Huiyu   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
PDF ( 1079 ) Cited
Export

EndNote

Ris

BibTeX

Formic acid fuel cell is a kind of fuel cell developed in recent years with promising commercial prospects. However, its development and commercialization are restricted by some factors, in which anodic catalyst is recognized as one of the most important factors. In this paper, some significant researches and attempts of promoting catalytic activity and poison tolerance are introduced, including novel preparation approaches, usage of novel supporting materials, as well as the design of multi-component catalyst by doping hetero elements. Concretely, the researches cover synthetic methods such as electrolytic deposition, organic colloid method, impregnation, study of using carbon nanotubes, graphene and complex materials as supports, and relevant work of adding other elements to prepare alloy catalysts and complex catalysts. Furthermore, the future development of formic acid fuel cell is also prospected. Contents 1 Introduction
2 Synthetic technology
2.1 Electrolytic deposition
2.2 Organic colloid method
3 Effect of different supports on catalytic activity
3.1 Carbon nanotube
3.2 Graphene
3.3 Complex materials
4 Addition of other elements
4.1 Pt-based catalysts
4.2 Pd-based catalysts
5 Effect of structures on activity and stability
5.1 Core-shell structure
5.2 Hollow nanosphere structure
5.3 Nanowire stru cture
6 Conclusions and outlook

CLC Number: 

[1] Chen C H, Liou W J, Lin H M, Wu S H, Borodzinski A, Stobinski L, Kedzierzawski P. Fuel Cells, 2010, 10(2): 227-233
[2] Jeong K J, Miesse C A, Choi J H, Lee J, Han J, Yoon S P, Nam S W, Lim T H, Lee T G. Journal of Power Sources, 2007, 168: 119-125
[3] Rice C, Ha S, Masel R I, Waszczuk P, Wieckowski A, Barnard T. Journal of Power Sources, 2002, 111(1): 83-89
[4] Zhu Y M, Khana Z, Masel R I. Journal of Power Sources, 2005, 139(1/2): 15-20
[5] Haan J L, Masel R I. Electrochimica Acta, 2009, 54(16): 4073-4078
[6] Wang Y, Wu X, Wu B, Gao Y. Journal of Power Sources, 2009, 189(2): 1020-1022
[7] Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. The Journal of Physical Chemistry C, 2008, 112(39): 15595-15601
[8] Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W. Electrochemistry Communications, 2008, 10(8): 1155-1157
[9] 衣宝廉(Yi B L). 燃料电池--原理 ·技术 ·应用(Fuel Cells: Theory, Technology and Appliction). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.6
[10] 刘凤君(Liu F J). 高效环保的燃料电池发电系统及其应用(High Efficient and Environmental Fuel Cell System and Application). 北京: 机械工业出版社(Beijing: China Machine Press), 2005.12
[11] Uhm S, Lee J K, Chung S T, Lee J. Journal of Industrial and Engineering Chemistry, 2008, 14: 493-498
[12] Wang J Y, Kang Y Y, Yang H, Cai W B. The Journal of Physical Chemistry C, 2009, 113(19): 8366-8372
[13] Wu Y N, Liao S J, Su Y L, Zeng J H, Dang D. Journal of Power Sources, 2010, 195(19): 6459-6462
[14] Uhm S, Lee H J, Kwon Y, Lee J. Angewandte Chemie, 2008, 47: 10163-10166
[15] Pandey R K, Lakshminarayanan V. The Journal of Physical Chemistry C, 2009, 113(52): 21596-21603
[16] El-Deab M S, Kibler L A, Kolb D M. Electrochemistry Communications, 2009, 11: 776-778
[17] Meng H, Sun S, Masse J P, Dodelet J P. Chemistry of Materials, 2008, 20(22): 6998-7002
[18] Schrebler R, Delralle M A, Gomez H, Veas C, Cordova R. Journal of Electroanalytical Chemistry, 1995, 380(1/2): 219-227
[19] Chi N, Chan K Y, Phillips D L. Catalysis Letters, 2001, 71(1): 21-26
[20] Jayashree R, Spendelow J, Yeom J, Rastogi C, Shannon M, Kenis P. Electrochimica Acta, 2005, 50(24): 4674-4682
[21] 廖世军(Liao S J), 李映伟(Li Y W). 石油化工(Petrochemical Technology), 2009, 38(5): 469-475
[22] 唐志诚(Tang Z C), 吕功煊(Lv G X). 化学进展(Progress in Chemistry), 2007, 19(9): 1301-1311
[23] 张玲玲(Zhang L L), 唐亚文(Tang Y W), 陆天虹(Lu T H), 周益明(Zhou Y M), 李邨(Li C). 南京师大学报(Journal of Nanjing Normal University), 2006, 29(3): 58-61
[24] Selvaraj V, Grace A N, Alagar M. Journal of Colloid and Interface Science, 2009, 333(1): 254-262
[25] Tedsree K, Li T, Jones S, Chan C W A, Yu K M K, Bagot P A J, Marquis E A, Smith G D W, Tsang S C E. Nat. Nano, 2011, 6(5): 302-307
[26] 刘洋(Liu Y), 邓超(Deng C), 邬冰(Wu B), 高颖(Gao Y). 化学工程师(Chemical Engineer), 2010, 2(2): 5-7
[27] Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson D P. Journal of Power Sources, 2006, 155(2): 95-110
[28] Che G, Lakshmi B B, Martin C R, Fisher E R. Langmuir, 1999, 15(3): 750-758
[29] Rajesh B, Karthik V, Karthikeyan S, Thampi K R, Bonard J M, Viswanathan B. Fuel, 2002, 81(17): 2177-2190
[30] Liu Z, Lin X, Lee J Y, Zhang W, Han M, Gan L M. Langmuir, 2002, 18(10): 4054-4060
[31] Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. The Journal of Physical Chemistry B, 2003, 107(26): 6292-6299
[32] Matsumoto T, Komatsu T, Nakano H, Arai K, Nagashima Y, Yoo E, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J. Catalysis Today, 2004, 90(3/4): 277-281
[33] Yang S, Zhang X, Mi H, Ye X. Journal of Power Sources, 2008, 175(1): 26-32
[34] Bai Z, Guo Y, Yang L, Li L, Li W, Xu P, Hu C, Wang K. Journal of Power Sources, 2011, 196: 6232-6237
[35] Wang Y, Shao Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[36] Seger B, Kamat P V. The Journal of Physical Chemistry C, 2009, 113(19): 7990-7995
[37] Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Nano Letters, 2009, 9(6): 2255-2259
[38] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Muilhaupt R. Journal of the American Chemical Society, 2009, 131(23): 8262-8270
[39] Guo S, Dong D, Wang E. ACS Nano, 2009, 4(1): 547-555
[40] Xu C, Wang X, Zhu J. The Journal of Physical Chemistry C, 2008, 112(50): 19841-19845
[41] Bong S, Uhm S, Kim Y R, Lee J, Kim H. Electrocatalysis, 2010, 1(2/3): 139-143
[42] Zhang S, Shao Y, Liao H G, Liu J, Aksay I A, Yin G, Lin Y. Chemistry of Materials, 2011, 23(5): 1079-1081
[43] Zhao H, Yang J, Wang L, Tian C G, Jiang B J, Fu H G. Chemical Communications, 2011, 2014-2016
[44] Wang X M, Xia Y Y. Electrochemistry Communications, 2009, 11: 28-30
[45] Feng L G, Yan L, Cui Z M, Liu C P, Xing W. Journal of Power Sources, 2011, 196: 2469-2474
[46] Zhou W, Du Y, Zhang H, Xu J, Yang P. Electrochimica Acta, 2010, 55(8): 2911-2917
[47] Wang X, Tang Y W, Gao Y, Lu T. Journal of Power Sources, 2008, 175: 784-788
[48] Zhang S, Qing M, Zhang H, Tian Y. Electrochemistry Communications, 2009, 11(11): 2249-2252
[49] Li X, Hsing I M. Electrochimica Acta, 2006, 51(17): 3477-3483
[50] Yu X W, Pickup P G. Journal of Power Sources, 2009, 192: 279-284
[51] Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Rodriguez H G, lvarez-Contreras L, Arriaga L G. Journal of Power Sources, 2010, 195: 461-465
[52] 樊博(Fan B), 郭玉国(Guo Y G), 万立骏(Wan L J). 化 学 进 展(Progress in Chemistry), 2010, 22(5): 852-860
[53] Rice C, Ha S, Masel R I, Wieckowski A. Journal of Power Sources, 2003, 115: 229-235
[54] Ha S, Rice C A, Masel R I, Wieckowski A. Journal of Power Sources, 2002, 112(2): 655-659
[55] Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S, Sung Y E. Journal of Power Sources, 2006, 163(1): 71-75
[56] Peng B, Wang H F, Liu Z P, Cai W B. J. Phys. Chem. C, 2010, 114: 3102-3107
[57] Yang H Z, Dai L, Xu D, Fang J Y, Zou S. Electrochimica Acta, 2010, 55: 8000-8004
[58] Xu J B, Zhao T S, Liang Z X. Journal of Power Sources, 2008, 185: 857-861
[59] Uhm S H, Chung S T, Lee J. Electrochemistry Communications, 2007, 9: 2027-2031
[60] Schmidt T J, Grgur B N, Behm R J, Markovic N M, Ross J P N. Physical Chemistry Chemical Physics, 2000, 2(19): 4379-4386
[61] Zhang L J, Wang Z Y, Xia D G. Journal of Alloys and Compounds, 2006, 426: 268-271
[62] Liu B, Li H Y, Die L, Zhang X H, Fan Z, Chen J H. Journal of Power Sources, 2009, 186: 62-66
[63] Chhina H, Campbell S, Kesler O. Journal of Power Sources, 2007, 164(2): 431-440
[64] Garin F. Catalysis Today, 2004, 89(3): 255-268
[65] Ha S, Larsen R, Zhu Y. Fuel Cells, 2004, 4: 337-343
[66] Ha S, Larsen R, Masel R I. Journal of Power Sources, 2005, 144: 28-34
[67] 周全(Zhou Q), 张存中(Zhang C Z), 陆晓林(Lu X L), 吴仲达(Wu Z D). 电化学(Journal of Electrochemistry), 2000, 6: 329-334
[68] Larsen R, Ha S, Zakzeski J, Masel R I. Journal of Power Sources, 2006, 157(1): 78-84
[69] Shobha T, Aravinda C L, Bera P, Devi L G, Mayanna S M. Materials Chemistry and Physics, 2003, 80(3): 656-661
[70] Du C, Chen M, Wang W, Yin G. Applied Materials & Interfaces, 2010, 3(2): 105-109
[71] Wang R, Liao S, Ji S. Journal of Power Sources, 2008, 180: 205-208
[72] Yu X W, Pickup G P. Electrochemistry Communications, 2010, 12: 800-803
[73] Wang X M, Xia Y. Electrochemistry Communications, 2008, 10: 1644-1646
[74] Liu Z L, Hong L, Thama M P, Lima T H, Jiang H. Journal of Power Sources, 2006, 161: 831-835
[75] Du C Y, Chen M, Wang W G, Yin G P, Shi P F. Electrochemistry Communications, 2010, 12(6): 843-846
[76] Zhang L L, Tang Y W, Bao J C, Lu T H, Li C. Journal of Power Sources, 2006, 162: 177-179
[77] 李文震(Li W Z), 孙公权(Sun G Q), 严玉山(Yan Y S), 辛勤(Xin Q). 化学进展(Progress in Chemistry), 2005, 17(5): 761-772
[78] Min M, Cho J, Cho K, Kim H. Electrochimica Acta, 2000, 45: 4211-4217
[79] 李焕芝(Li H Z), 沈娟章(Shen J Z), 杨改秀(Yang G X), 唐亚文(Tang Y W), 陆天虹(Lu T H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7): 1445-1450
[80] Jung W S, Han J H, Yoon S P, Nam S W, Lim T H, Hong S A. Journal of Power Sources, 2009, 196(10): 4573-4578
[81] Seo M H, Lim E J, Choi S M, Nam S H, Kim H J, Kim W B. International Journal of Hydrogen Energy, 2011, 36(18): 11545-11553
[82] 刘宾(Liu B), 廖世军(Liao S J), 梁振兴(Liang Z X). 化学进展(Progress in Chemistry), 2011, 23(5): 852-859
[83] Zeng J, Yang J, Lee J Y, Zhou W. The Journal of Physical Chemistry B, 2006, 110(48): 24606-24611
[84] Kim S W, Kim M, Lee W Y, Hyeon T. Journal of the American Chemical Society, 2002, 124(26): 7642-7643
[85] Liang H P, Zhang H M, Hu J S, Guo Y G, Wan L J, Bai C L. Angewandte Chemie International Edition, 2004, 43(12): 1540-1543
[86] Fang B Z, Kim M, Yu J S. Applied Catalysis B: Environmental, 2008, 84: 100-105
[87] Jeona H, Jooa J, Kwona Y, Uhmb S, Lee J. Journal of Power Sources, 2010, 195: 5929-5933
[88] Li R, Hao H, Cai W B, Huang T, Yu A. Electrochemistry Communications, 2010, 12(7): 901-904
[89] Bai Z Y, Yang L, Li L, Lv J, Wang K, Zhang J. J. Phys. Chem. C, 2009, 113: 10568-10573
[90] Bashyam R, Zelenay P. Nature, 2006, 443(7): 63-66
[91] Ge J, Xing W, Xue X, Liu C, Lu T, Liao J. The Journal of Physical Chemistry C, 2007, 111(46): 17305-17310
[1] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[2] Jin Weiyang, Cheng Dangguo, Chen Fengqiu, Zhan Xiaoli. Synthesis and Application of Zeolite Membrane Encapsulated Catalysts [J]. Progress in Chemistry, 2011, 23(10): 2021-2030.
[3] Li Xiaohui, Fan Tongxiang. Artificial Photosynthesis [J]. Progress in Chemistry, 2011, 23(9): 1841-1853.
[4] Liu Bin, Liao Shijun, Liang Zhenxing. Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts [J]. Progress in Chemistry, 2011, 23(5): 852-859.
[5] Zhang Liuyi, Han Caiyun, Du Dongquan, Zhang Yanyan, Xu Siwei, Luo Yongming. Sulfated Zirconia--A Superacid [J]. Progress in Chemistry, 2011, 23(5): 860-873.
[6] Xiao Xin, Zhang Weide. Photocatalysis of Carbon Nanotubes/Semiconductor Composites [J]. Progress in Chemistry, 2011, 23(4): 657-668.
[7] Li Xiang, An Li, Zhang Lijuan, Li Fan, Wang Xiayan, Xia Dingguo. Pt-Based Intermetallic Compounds as Electrocatalysts [J]. Progress in Chemistry, 2011, 23(0203): 501-508.
[8] Ma Liyong Wang Yang Chen Fengqiu Zhan Xiaoli. Catalysts in the Catalytic Cracking of Hydrocarbons to Produce Light Olefins [J]. Progress in Chemistry, 2010, 22(0203): 265-269.
[9] Zhao Dongjiang Yin Geping Wei Jie. Non-platinum Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells [J]. Progress in Chemistry, 2009, 21(12): 2753-2759.
[10] Wei Pingyu Yang Qinglin Guo Lin. Bismuth Oxyhalide Compounds as Photocatalysts [J]. Progress in Chemistry, 2009, 21(09): 1734-1741.
[11] . Metalloporphyrin-Based Supramolecular Catalysts [J]. Progress in Chemistry, 2009, 21(04): 588-599.
[12] . Theoretic Research on the Activation and Oxidation of Hydrocarbons [J]. Progress in Chemistry, 2009, 21(04): 577-587.
[13] Zhu Ning|Wang Yang|Chen Fengqiu**|Zhan Xiaoli. Application of In Situ FTIR to Deactivation by Coke Deposition [J]. Progress in Chemistry, 2008, 20(10): 1447-1452.
[14] Jiang Chengjun1,2 Chen Zhirong1*. Synthesis of Chiral (salen) Co Complexes and Their Applications in Hydrolytic Kinetic Resolution [J]. Progress in Chemistry, 2008, 20(09): 1294-1305.
[15] Wang Sheng1 Gao Diannan1,2 Zhang Chunxi1 Yuan Zhongshan1 Zhang Peng1 Wang Shudong1**. Low-temperature Catalytic Combustion of Methane over Noble Metal Catalyst [J]. Progress in Chemistry, 2008, 20(06): 789-797.