中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 928-949 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Recent Developments in Radiationless Transitions

Niu Yingli1, Lin Chinkai2, Yang Ling3, Yu Jianguo4, He Rongxing5, Pang Ran6, Zhu Chaoyuan2, Hayashi Michitoshi7, Lin Sheng Hsien2   

  1. 1. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. Institute of Modern Physics, Northwest University, Xian 710069, China;
    3. Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 China;
    4. Department of Chemistry, Beijing Normal University, Beijing 10087;
    5. College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China;
    6. State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering and Xiamen University, Xiamen, 361005, Fujian, China;
    7. Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan
  • Received: Revised: Online: Published:
PDF ( 1578 ) Cited
Export

EndNote

Ris

BibTeX

In this paper, we will introduce recent works on the mathematical treatments and the first-principle calculations concerning the internal conversion rates for the cases with anharmonic potentials, and conical intersecting potentials. The simulations of absorption and emission spectra with anharmonic effects are also presented to check the validity of the potential energy surfaces obtained from the quantum chemical calculations. The effect of conical intersection on internal conversion has attracted considerable attention. In this paper a different approach will be proposed and applied to pyrazine. Another important non-radiative process, molecular vibrational relaxation, is also treated by applying the adiabatic approximation to the ab initio anharmonic potential energy surfaces in this paper. The vibrational relaxation rates in water dimer and aniline are chosen to demonstrate the calculation.

CLC Number: 

[1] Lin S H. J. Chem. Phys., 1966, 4410): 3759-3767
[2] Englman R, Jortner J. Mol. Phys., 1970, 182): 145-164
[3] Freed F, Jortner J. J. Chem. Phys., 1970, 5212): 6272-6291
[4] Nitzan A, Jortner J. J. Chem. Phys., 1971, 553): 1355-1368
[5] Siebrand W. J. Chem. Phys., 1971, 541): 363-367
[6] Fischer S. Chem. Phys. Lett., 1971, 115): 577-582
[7] Lin S H, Bersohn R. J. Chem. Phys., 1968, 486): 2732-2736
[8] Henry B R, asha M. Annu. Rev. Phys. Chem., 1968, 191): 161-192
[9] Huang , Rhys A. Proc. R. Soc. Lond. A., 1950, 204: 406-423
[10] Huang . Contemp. Phys., 1981, 226): 599-612
[11] Duschinsky F. Acta Physicochim. USSR)., 1937, 7: 551
[12] Hayashi M, Mebel A M, Liang , Lin S H. J. Chem. Phys., 1998, 1085): 2044-2055
[13] Mebel A M, Hayashi M, Liang , Lin S H. J. Phys. Chem. A., 1999, 10350): 10674-10690
[14] Peng Q, Yi Y, Shuai , Shao J. J. Chem. Phys., 2007, 126: art. no. 114302
[15] Peng Q, Yi Y, Shuai , Shao J. J. Am. Chem. Soc., 2007, 129: 9333-9339
[16] Niu Y, Peng Q, Shuai . Sci. China Ser. B-Chem., 2008, 5112): 1153-1158
[17] Tang J, Lee M T, Lin S H. J. Chem. Phys., 2003, 11914): 7188-7196
[18] Islampour R, Miralinaghi M. J. Phys. Chem. A., 2007, 11138): 9454-9462
[19] Islampour R, Miralinaghi M. J. Phys. Chem. A., 2009, 11311): 2340-2349
[20] Pople J A, Sidman J W. J. Chem. Phys., 1957, 276): 1270-1277
[21] Robinson G W, Digiorgio V E. Can. J. Chem., 1958, 361): 31-38
[22] Callomon J H, Innes . J. Mol. Spectrosc., 1963, 101/6): 166-181
[23] Job V A, Sethuraman V, Innes . J. Mol. Spectrosc., 1969, 301/3): 365-426
[24] Moule D C, Walsh A D. Chem. Rev., 1975, 751): 67-84
[25] Miller R G, Lee E C. J. Chem. Phys., 1978, 6810): 4448-4464
[26] Strickler S J, Barnhart R J. J. Phys. Chem., 1982, 864): 448-455
[27] Jensen P, Bunker P R. J. Mol. Spectrosc., 1982, 941): 114-125
[28] Clouthier D J, Ramsay D A. Ann. Rev. Phys. Chem., 1983, 341): 31-58
[29] Reisner D E, Field R W, insey J L, Dai H. J. Chem. Phys., 1984, 8012): 5968-5978
[30] Lin C , Chang H C, Lin S H. J. Phys. Chem. A., 2007, 11138): 9347-9354
[31] Coon J B, Naugle N W, Mckenzie R D. J. Mol. Spectrosc., 1966, 202): 107-129
[32] Lin S H, Eyring H. Proc. Nat. Acad. Sci. USA., 1974, 719): 3415-3417
[33] Lin S H. Proc. R. Soc. Lond. A., 1976, 352 1668): 57-71
[34] Lin S H, Fujimura Y, Neusser H J, Schlag E W. Multiphoton Spectroscopy of Molecules. New York: Academic Press, 1984
[35] Yeung E S, Moore C B. J. Chem. Phys., 1973, 589): 3988-3998
[36] Miller R G, Lee E C. Chem. Phys. Lett., 1975, 331): 104-107
[37] Miller R G, Lee E C. Chem. Phys. Lett., 1976, 411): 52-54
[38] Yeung E S, Moore C B. J. Chem. Phys., 1974, 605): 2139-2147
[39] Tang Y, Fairchild P W, Lee E C. J. Chem. Phys., 1977, 667): 3303-3305
[40] Liang , Chang R, Hayashi M, Lin S H. Principle of Molecular Spectroscopy and Photochemistry. Taichung: National Chung Hsing University Press, 2001
[41] Lin C, Li M, Yamaki M, Hayashi M, Lin S H. Phys. Chem. Chem. Phys., 2010, 1237): 11432-11444
[42] hu C, Liang , Hayashi M, Lin S H. Chem. Phys., 2009, 3581/2): 137-146
[43] Wang H, hu C, Yu J, Lin S H. J. Phys. Chem. A., 2009, 11352): 14407-14414
[44] Villa E, Amirav A, Lim E C. J. Phys. Chem., 1988, 9219): 5393-5397
[45] Mochizuki Y, aya , Ito M. J. Chem. Phys., 1978, 692): 935-936
[46] Yang L, hu C Y, Yu J G, Lin S H. Chem. Phys., to be published).
[47] Da Silva F F, Almeida D, Martins G, Milosavljevic A R, Marinkovic B P, Hoffmann S V, Mason N J, Nunes Y, Garcia G, Limao-Vieira P. Phys. Chem. Chem. Phys., 2010, 1225)
[48] night A E W, Lawburgh C M, Parmenter C S. J. Chem. Phys., 1975, 6310): 4336-4351
[49] Butler P, Moss D B, Yin H, Schmidt T W, able S H. J. Chem. Phys., 2007, 1279): 94303
[50] Lin S H. J. Chem. Phys., 1973, 5812): 5760-5768
[51] Werner H J, nowles P J, Lindh R, Manby F R, Celani P, orona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, Mcnicholas S J, Meyer W, Mura M E, Nicklaβ A, Palmieri P, Pitzer R, Schumann U, Stoll H, Tarroni R, Thorsteinsson T. Molpro. 2006
[52] Abramson A S, Spears G, Rice S A. J. Chem. Phys., 1972, 565): 2291-2308
[53] He R X, Yang L, hu C Y, Yamaki M, Lee Y P, Lin S H. J. Chem. Phys., 2011, 1349): 94313
[54] Seidner L, Stock G, Sobolewski A L, Domcke W. J. Chem. Phys., 1992, 967): 5298-5309
[55] Woywod C, Domcke W, Sobolewski A L, Werner H. J. Chem. Phys., 1994, 1002): 1400-1413
[56] Seel M, Domcke W. J. Chem. Phys., 1991, 9511): 7806-7822
[57] Suzuki Y, Fuji T, Horio T, Suzuki T. J. Chem. Phys., 2010, 13217): 174302
[58] Werner U, Mitric R, Suzuki T, Bonacic-outeck V. Chem. Phys., 2008, 3491-3): 319-324
[59] Innes , Ross I G, Moomaw W R. J. Mol. Spectrosc., 1988, 1322): 492-544
[60] Lin C , Niu Y L, hu C Y, Shuai G, Lin S H. Chem. Asian J., 2011, 611): 2977-2985
[61] Laubereau A, aiser W. Rev. Mod. Phys., 1978, 503): 607-665
[62] Nesbitt D J, Field R W. J. Phys. Chem., 1996, 10031): 12735-12756
[63] Voth G A, Hochstrasser R M. J. Phys. Chem., 1996, 10031): 13034-13049
[64] Barone V. J. Chem. Phys., 2005, 1221): 14108
[65] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, heng G, Sonnenberg J L, Hada M, Ehara M, Toyota , Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, itao O, Nakai H, Vreven T, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, udin N, Staroverov V N, obayashi R, Normand J, Raghavachari , Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, lene M, nox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma , akrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09. Gaussian, Inc.
[66] Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 3931/3): 51-57
[67] Huang S, Miller R E. J. Chem. Phys., 1989, 9111): 6613-6631
[68] Yamada Y, Okano J, Mikami N, Ebata T. Chem. Phys. Lett., 2006, 4324-6): 421-425
[69] Yamada Y, Okano J, Mikami N, Ebata T. J. Chem. Phys., 2005, 12312): 124316
[70] Ebata T, Minejima C, Mikami N. J. Phys. Chem. A., 2002, 10646): 11070-11074
[71] Hutchinson J S, Reinhardt W P, Hynes J T. J. Chem. Phys., 1983, 799): 4247-4260
[72] Ebata T, ayano M, Sato S, Mikami N. J. Phys. Chem. A., 2001, 10538): 8623-8628
[1] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[2] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[3] Wang Sasa, Sun Hui, Chen Shengjie, You Hongxing, Liu Ye* . Applications of Transition Metallates in Catalysis [J]. Progress in Chemistry, 2012, 24(12): 2287-2298.
[4] Wang Huixiang, Jiang Dong, Wu Dong, Li Debao, Sun Yuhan. Photocatalytic Reduction of CO2 on TiO2 Catalysts [J]. Progress in Chemistry, 2012, 24(11): 2116-2123.
[5] Zhou Tianchen, He Chuan, Zhang Yanan, Zhao Guohua*. Photoelectrocatalytic Reduction of CO2 [J]. Progress in Chemistry, 2012, (10): 1897-1905.
[6] Wang Li, Ao Xianquan, Wang Shihan. Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas [J]. Progress in Chemistry, 2012, (9): 1696-1706.
[7] Li Mengli, Yang Xiaolong, Tang Liping, Xiong Xumao, Ren Sili, Hu Bin. Catalysts for Catalytic Decomposition of Nitrous Oxide [J]. Progress in Chemistry, 2012, (9): 1801-1817.
[8] Lu Xueyi, Liao Shijun, Song Huiyu. Highly Active and Highly Poison Tolerant Anodic Catalysts for Direct Formic Acid Fuel Cells [J]. Progress in Chemistry, 2012, 24(08): 1437-1446.
[9] Zhang Jun, Chen Jing, Huang Xinsong, Li Guangshe. Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation [J]. Progress in Chemistry, 2012, 24(07): 1245-1251.
[10] Yin Hailiang, Zhou Tongna, Chai Yongming, Liu Yunqi, Liu Chenguang. Application of Zeolites in Hydrodesulfurization Catalysts for Deep Desulfurization [J]. Progress in Chemistry, 2012, 24(07): 1252-1261.
[11] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[12] Chen Zhaoxu, Huang Yucheng, He Xiang. Theoretical Study of the Mechanism of Methanol Steam Reforming over Pd/ZnO [J]. Progress in Chemistry, 2012, 24(06): 873-878.
[13] Liu Fudong, Shan Wenpo, Shi Xiaoyan, He Hong. Vanadium-Based Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2012, 24(04): 445-455.
[14] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[15] Wang Yujuan, Xu Jie, Yin Guochuan. Diversity of Active Intermediates in Homogeneous Catalytic Oxidations [J]. Progress in Chemistry, 2012, 24(0203): 203-211.