中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1199-1213 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Enhanced Sampling Method in Molecular Simulations

Yang Lijiang1, Shao Qiang2, Gao Yiqin1   

  1. 1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
  • Received: Revised: Online: Published:
PDF ( 2219 ) Cited
Export

EndNote

Ris

BibTeX

Molecular simulations play more and more important roles in the studies of chemistry, physics, biology and material sciences, etc. However, due to the limitations of the current computing power, there is still a huge gap between the timescale which can be reached in molecular simulations and that observed in the experiments. Applications of the enhanced sampling method can effectively extend the timescale being approached, so that it improves greatly the thermodynamics and kinetics calculation ability of the molecular simulations. In this paper, the developments and comparisons of the different enhanced sampling methods are introduced briefly, and then the integrated tempering enhanced sampling method (ITS) and its applications to the protein folding simulations are presented in details. At last, the new challenges and prospects in the field of the enhanced sampling methods' development and application are summarized. Contents
1 Introduction
2 Enhanced sampling in the energy and configuration space based on the integrated tempering method
3 Applications: thermodynamics studies of protein folding
4 Future developments
5 Summaries

CLC Number: 

[1] Torrie G M, Valleau J P. Journal of Computational Physics, 1977, 23: 187-199
[2] Bartels C, Karplus M. J. Phys. Chem. B, 1998, 102: 865-880
[3] Zwanzig R W. J. Chem. Phys., 1954, 22: 1420-1426
[4] Kirkwood J G. J. Chem. Phys., 1935, 3: 300-313
[5] Schlitter J, Klahn M. J. Chem. Phys., 2003, 118: 2057-2060
[6] Sprik M, Ciccotti G. J. Chem. Phys., 1998, 109: 7737-7744
[7] Knight J L, Brooks C L. Journal of Computational Chemistry, 2009, 30: 1692-1700
[8] Grubmuller H. Phys. Rev. E, 1995, 52: 2893-2906
[9] Jensen M O, Park S, Tajkhorshid E, Schulten K. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 6731-6736
[10] Hummer G, Szabo A. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 3658-3661
[11] Hummer G, Szabo A. Biophysical Journal, 2003, 85: 5-15
[12] Rosso L, Minary P, Zhu Z W, Tuckerman M E. J. Chem. Phys., 2002, 116: 4389-4402
[13] Rosso L, Tuckerman M E. Molecular Simulation, 2002, 28: 91-112
[14] Laio A, Gervasio F L. Rep. Prog. Phys., 2008, 71: art.no.126601
[15] Bussi G, Laio A, Parrinello M. Phys. Rev. Lett., 2006, 96: art. no. 090601
[16] Biarnes X, Ardevol A, Planas A, Rovira C, Laio A, Parrinello M. J. Am. Chem. Soc., 2007, 129: 10686-10693
[17] Gervasio F L, Laio A, Parrinello M. J. Am. Chem. Soc., 2005, 127: 2600-2607
[18] Karamertzanis P G, Raiteri P, Parrinello M, Leslie M, Price S L. J. Phys. Chem. B, 2008, 112: 4298-4308
[19] Laio A, Rodriguez-Fortea A, Gervasio F L, Ceccarelli M, Parrinello M. J. Phys. Chem. B, 2005, 109: 6714-6721
[20] Mart.onak R, Donadio D, Oganov A R, Parrinello M. Phys. Rev. B, 2007, 76:art.no.014120
[21] Mart.onak R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Zipoli F, Parrinello M. Z. Kristallogr., 2005, 220: 489-498
[22] Mart.onak R, Laio A, Parrinello M. Phys. Rev. Lett., 2003, 90:art.no.075503
[23] Michel C, Laio A, Mohamed F, Krack M, Parrinello M, Milet A. Organometallics, 2007, 26: 1241-1249
[24] Prestipino S, Giaquinta P V. J. Chem. Phys., 2008, 128:art.no.114707
[25] Voter A F. Phys. Rev. Lett., 1997, 78: 3908-3911
[26] Voter A F. J. Chem. Phys., 1997, 106: 4665-4677
[27] Hamelberg D, Mongan J, McCammon J A. J. Chem. Phys., 2004, 120: 11919-11929
[28] Hamelberg D, McCammon J A. J. Am. Chem. Soc., 2005, 127: 13778-13779
[29] Hamelberg D, Shen T, McCammon J A. J. Chem. Phys., 2005, 122: art. no 241103
[30] Gao Y Q, Yang L J. J. Chem. Phys., 2006, 125: art. no. 114103
[31] Yang L J, Grubb M P, Gao Y Q. J. Chem. Phys., 2007, 126: art. no. 125102
[32] Fu X B, Yang L J, Gao Y Q. J. Chem. Phys., 2007, 127: art. no.154106
[33] Gao Y Q, Yang L J, Fan Y B, Shao Q. International Reviews in Physical Chemistry, 2008, 27: 201-227
[34] Mu Y, Gao Y Q. J. Chem. Phys., 2007, 127: art. no. 105102
[35] Yang L J, Shao Q, Gao Y Q. J. Phys. Chem. B, 2009, 113: 803-808
[36] Tsallis C. J. Stat. Phys., 1988, 52: 479-487
[37] Nakajima N, Nakamura H, Kidera A. J. Phys. Chem. B, 1997, 101: 817-824
[38] Wang F G, Landau D P. Physical Review E, 2001, 64: art. no. 056101
[39] Wang F G, Landau D P. Phys. Rev. Lett., 2001, 86: 2050-2053
[40] Mitsutake A, Okamoto Y. Chemical Physics Letters, 2000, 332: 131-138
[41] Sugita Y, Okamoto Y. Chemical Physics Letters, 1999, 314: 141-151
[42] Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M. Journal of Computational Chemistry, 1992, 13: 1011-1021
[43] Chodera J D, Swope W C, Pitera J W, Seok C, Dill K A. J. Chem. Theory. Comput., 2007, 3: 26-41
[44] Liu P, Kim B, Friesner R A, Berne B J. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 13749-13754
[45] Huang X H, Hagen M, Kim B, Friesner R A, Zhou R H, Berne B J. J. Phys. Chem. B, 2007, 111: 5405-5410
[46] Gao Y Q. J. Chem. Phys., 2008, 128: art. no. 064105
[47] Gao Y Q. J. Chem. Phys., 2008, 128: art. no. 134111
[48] Yang L J, Gao Y Q. J. Chem. Phys., 2009, 131:art.no.214109
[49] Hwang S, Shao Q, Williams H, Hilty C, Gao Y Q. J. Phys. Chem. B, 2011, 115: 6653-6660
[50] Shao Q, Gao Y Q. J. Chem. Phys., 2011, 135: art. no. 135102
[51] Shao Q A, Gao Y Q. J. Chem. Theory Comput., 2010, 6: 3750-3760
[52] Yang L J, Shao Q, Gao Y Q. J. Chem. Phys., 2009, 130: art. no. 124111
[53] Mills G, Jonsson H. Phys. Rev. Lett., 1994, 72: 1124-1127
[54] Dellago C, Bolhuis P G, Csajka F S, Chandler D. J. Chem. Phys., 1998, 108: 1964-1977
[55] Bolhuis P G, Dellago C, Chandler D. Faraday Discussions, 1998, 421-436
[56] Dellago C, Bolhuis P G, Chandler D. J. Chem. Phys., 1999, 110: 6617-6625
[57] Bolhuis P G, Chandler D, Dellago C, Geissler P L. Annual Review of Physical Chemistry, 2002, 53: 291-318
[58] Majek P, Elber R. J. Chem. Theory Comput., 2010, 6: 1805-1817
[59] Goedert M, Spillantini M G. Science, 2006, 314: 777-781
[60] Bellotti V, Nuvolone M, Giorgetti S, Obici L, Palladini G, Russo P, Lavatelli F, Perfetti V, Merlini G. Ann. Med., 2007, 39: 200-207
[61] Shao Q, Yang L J, Gao Y Q. J. Chem. Phys., 2009, 130: art. no. 195104
[62] Yang L, Shao Q, Gao Y Q. J. Phys. Chem. B, 2009, 113: 803-808
[63] Shao Q A, Wei H Y, Gao Y Q. J. Mol. Biol., 2010, 402: 595-609
[64] Du D G, Tucker M J, Gai F. Biochemistry-US, 2006, 45: 2668-2678
[65] Du D G, Zhu Y J, Huang C Y, Gai F. P. Natl. Acad. Sci. USA, 2004, 101: 15915-15920
[66] Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I. Biochemistry-US, 1992, 31: 9665-9672
[67] Bai Y W, Karimi A, Dyson H J, Wright P E. Protein Sci., 1997, 6: 1449-1457
[68] Wei H Y, Fan Y B, Gao Y Q. J. Phys. Chem. B, 2010, 114: 557-568
[69] Wei H Y, Shao Q A, Gao Y Q. Physical Chemistry Chemical Physics, 2010, 12: 9292-9299
[1] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[2] Lin Yingwu. Computer-Aided Rational Protein Design: From Myoglobin to Nitric Oxide Reductases [J]. Progress in Chemistry, 2012, 24(05): 784-789.
[3] Zheng Yansheng, Zhuo Zhihao, Mo Qian, Li Junsheng. Molecular Simulation and Quantum Chemistry Calculation of Ionic Liquids [J]. Progress in Chemistry, 2011, 23(9): 1862-1870.
[4] . Application of Molecular Simulation in Biosensor Development [J]. Progress in Chemistry, 2010, 22(05): 845-851.
[5] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[6] Zhang Aijuan Xie Yun Zhou Jian. Experimental Control and Characterization of Proteins Orientation on Surfaces [J]. Progress in Chemistry, 2009, 21(0708): 1408-1417.
[7] Zhang Yang,Yang Jichu,Yu Yangxin,Li Yigui. Molecular Simulation and Its Applications in the Field of Supercritical Fluids [J]. Progress in Chemistry, 2005, 17(06): 955-962.
[8] Cao Bin*,Gao Jinsen,Xu Chunming. The Applications of Molecular Simulation Technology in the Fields of Petroleum [J]. Progress in Chemistry, 2004, 16(02): 291-.
[9] Jiang Ming,Shen Tao,Xu Huibi,Liu Changlin**. The Influences of Metal Ions on Protein Folding, Recognition, Self-Assembly and Biological Functions [J]. Progress in Chemistry, 2002, 14(04): 263-.
[10] Li Yigui,Li Chunxi. Progress in Study on Molecular Thermodynamic Model for Electrolyte Solution [J]. Progress in Chemistry, 1996, 8(02): 155-.