中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1175-1184 Previous Articles   Next Articles

Special Issue: 计算化学; 酶化学

• Special Issue of Quantum Chemistry •

Computational Simulations of Zinc Enzyme: Challenges and Recent Advances

Wu Ruibo1, Cao Zexing2, Zhang Yingkai3   

  1. 1. School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
    2. College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China;
    3. Department of Chemistry, New York University, New York 10003, US
  • Received: Revised: Online: Published:
PDF ( 1272 ) Cited
Export

EndNote

Ris

BibTeX

Zinc enzymes play a variety of essential biological roles, and their functions and/or structural organizations are critically dependent on the zinc binding site. However, the zinc coordination shell is so complicated that an accurate and powerful theoretical simulation protocol is highly required in calculation. Herein, we review the recent studies of the selected zinc enzymes by the state-of-the-art combined quantum mechanism/molecular mechanism molecular dynamics (QM/MM MD) simulations in probing the reaction mechanism and revealing the relationship of structure and function. Meanwhile, the accuracy of all the current available pairwise force fields to describe zinc coordination structure is very poor, so the recent development of force fields for zinc enzyme is also presented. By the end of this review, some prospects and suggestions are given for further exploration of zinc enzyme. 1 Significance and challenges of zinc enzymes
1.1 Zinc enzyme
1.2 Challenges of experimental research in zinc enzyme
1.3 Challenges of computational research in zinc enzym
2 Recent advance of computational research in zinc enzyme
2.1 QM/MM study of zinc enzyme
2.2 Force field development for zinc enzyme
3 Outlook

CLC Number: 

[1] Andreini C, Banci L, Bertini I, Rosato A. J. Proteome Res., 2006, 5: 196-201
[2] Auld D S. Biometals, 2001, 14: 271-313
[3] Anzellotti A I, Farrell N P. Chem. Soc. Rev., 2008, 37: 1629-1651
[4] Parkin G. Chem. Rev., 2004, 104: 699-767
[5] Maret W, Li Y. Chem. Rev., 2009, 109: 4682-707
[6] Shankar S, Srivastava R K. Programmed Cell Death in Cancer Progression and Therapy, 2008, 615: 261-298
[7] Mueller S, Kraemer O H. Curr. Cancer Drug Tar., 2010, 10: 210-228
[8] Li X, Wu J F. Recent Patents on Anti-Cancer Drug Discovery, 2010, 5: 109-141
[9] Bourboulia D, Stetler-Stevenson W G. Seminars in Cancer Biology, 2010, 20: 161-168
[10] Ropero S, Esteller M. Molecular Oncology, 2007, 1: 19-25
[11] Parkin G. Chem. Comm., 2000, 1971-1985
[12] Yi L, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 855-62
[13] Bock C W, Katz A K, Glusker J P. J. Am. Chem. Soc., 1995, 117: 3754-3763
[14] Sigel H, Martin R B. Chem. Soc. Rev., 1994, 23: 83-91
[15] Cook J D, Penner-Hahn J E, Stemmler T L. Methods in Nano Cell Biology, 2008, 90: 199-216
[16] Somoza J R, Skene R J, Katz B A, Mol C, Ho J D, Jennings A J, Luong C, Arvai A, Buggy J J, Chi E, Tang J, Sang B C, Verner E, Wynands R, Leahy E M, Dougan D R, Snell G, Navre M, Knuth M W, Swanson R V, McRee D E, Tari L W. Structure, 2004, 12: 1325-1334
[17] Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski N P, Lewis T A, Maglathin R L, McLean T H, Bochkarev A, Plotnikov A N, Vedadi M, Arrowsmith C H. J. Biol. Chem., 2008, 283: 11355-11363
[18] Bottomley M J, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, De Francesco R, Steinkuhler C, Gallinari P, Carfi A. J. Biol. Chem., 2008, 283: 26694-26704
[19] Wu R B, Hu P, Wang S L, Cao Z X, Zhang Y K. J. Chem. Theory Comput., 2010, 6: 337-343
[20] Li Y L, Mei Y, Zhang D W, Xie D Q, Zhang J Z H. J. Phys. Chem. B, 2011, 115: 10154-10162
[21] Lipton A S, Heck R W, Staeheli G R, Valiev M, De Jong W A, Ellis P D. J. Am. Chem. Soc., 2008, 130: 6224-6230
[22] Ressalan S, Iyer C S P. Rev. Anal. Chem., 2004, 23: 159-232
[23] Tamames B, Sousa S F, Tamames J, Fernandes P A, Ramos M J. Proteins: Struct., Funct., Bioinf., 2007, 69: 466-475
[24] Ramos M J, Fernandes P A. Accounts Chem. Res., 2008, 41: 689-698
[25] Kraut D A, Carroll K S, Herschlag D. Annu. Rev. of Biochem., 2003, 72: 517-571
[26] Khandelwal A, Lukacova V, Comez D, Kroll D M, Raha S, Balaz S. J. Med. Chem., 2005, 48: 5437-5447
[27] Irwin J J, Raushel F M, Shoichet B K. Biochemistry, 2005, 44: 12316-12328
[28] Gao H, Ke Z, DeYonker N J, Wang J, Xu H, Mao Z W, Phillips D L, Zhao C. J. Am. Chem. Soc., 2011, 133: 2904-2915
[29] Himo F. Theor. Chem. Acc., 2006, 116: 232-240
[30] Senn H M, Thiel W. Angew. Chem., 2009, 48: 1198-1229
[31] Hu H, Yang W T. J. Mol. Struc-Theochem, 2009, 898: 17-30
[32] Acevedo O, Jorgensen W L. Acc. Chem. Res., 2010, 43: 142-151
[33] Ranaghan K E, Mulholland A. J. Int. Rev. Phys. Chem., 2010, 29: 65-133
[34] Wu R, Lu Z, Cao Z, Zhang Y. J. Am. Chem. Soc., 2011, 133: 6110-6113
[35] Wu R, Wang S, Zhou N, Cao Z, Zhang Y. J. Am. Chem. Soc., 2010, 132: 9471-9479
[36] Blumberger J, Lamoureux G, Klein M L. J. Chem. Theory Comput., 2007, 3: 1837-1850
[37] Zhang X, Wu R, Song L, Lin Y, Lin M, Cao Z, Wu W, Mo Y. J. Comput. Chem., 2009, 30: 2388-2401
[38] Wu R, Xie H, Mo Y, Cao Z. J. Phys. Chem. A, 2009, 113: 11595-11603
[39] Wu R, Xie H, Cao Z, Mo Y. J. Am. Chem. Soc., 2008, 130: 7022-7031
[40] Wong K Y, Gao J. Biochemistry, 2007, 46: 13352-13369
[41] Riccardi D, Yang S, Cui Q. BBA-Proteins and Proteomics, 2010, 1804: 342-351
[42] Yang X J, Seto E. Oncogene, 2007, 26: 5310-5318
[43] Wang D F, Helquist P, Wiest O. J. Org. Chem., 2007, 72: 5446-5449
[44] Bradner J E, West N, Grachan M L, Greenberg E F, Haggarty S J, Warnow T, Mazitschek R. Nat. Chem. Biol., 2010, 6: 238-243
[45] Menikarachchi L C, Gascon J A. Curr. Top. Med. Chem., 2010, 10: 46-54
[46] Cho A E, Rinaldo D. J. Comput. Chem., 2009, 30: 2609-2616
[47] Khandelwal A, Balaz S. J. Comput. Aid. Mol. Des., 2007, 21: 131-137
[48] Khandelwal A, Balaz S. Proteins: Struct., Funct., Bioinf., 2007, 69: 326-339
[49] Lamoureux G, Blumberger J, Klein M L. Abstracts of Papers of the American Chemical Society, 2006, 232: 256-256
[50] Wong K Y, Gao J. Febs Journal, 2011, 278: 2579-2595
[51] Xiong Y, Lu H T, Zhan C G. J. Comput. Chem., 2008, 29: 1259-1267
[52] Lopez-Canut V, Roca M, Bertran J, Moliner V, Tunon I. J. Am. Chem. Soc., 2011, 133: 12050-12062
[53] Klusak V, Barinka C, Plechanovova A, Mlcochova P, Konvalinka J, Rulisek L, Lubkowski J. Biochemistry, 2009, 48: 4126-4138
[54] Szeto M W Y, Mujika J I, Zurek J, Mulholland A J, Harvey J N. J. Mol. Struc-Theochem, 2009, 898: 106-114
[55] Schurer G, Lanig H, Clark T. Biochemistry, 2004, 43: 5414-5427
[56] Ho M H, De Vivo M, Dal Peraro M, Klein M L. J. Chem. Theory Comput., 2009, 5: 1657-1666
[57] Riccardi D, Koenig P, Guo H, Cui Q. Biochemistry, 2008, 47: 2369-2378
[58] Wu S S, Xu D G, Guo H. J. Am. Chem. Soc., 2010, 132: 17986-17988
[59] Xiao C, Zhang Y. J. Phys. Chem. B, 2007, 111: 6229-6235
[60] Yao L, Yan H, Cukier R I. J. Phys. Chem. B, 2006, 110: 26320-26326
[61] Riccardi D, Cui Q. J. Phys. Chem. A, 2007, 111: 5703-5711
[62] Li X, Hayik S A, Merz K M Jr. J. Inorg. Biochem., 2010, 104: 512-522
[63] Hoops S C, Anderson K W, Merz K M Jr. J. Am. Chem. Soc., 1991, 113: 8262-8270
[64] Bredenberg J, Nilsson L. Int. J. Quantum Chem., 2001, 83: 230-244
[65] Li W, Zhang J, Wang J, Wang W. J. Am. Chem. Soc., 2008, 130: 892-900
[66] Stote R H, Karplus M. Proteins: Struct., Funct., Genet., 1995, 23: 12-31
[67] Zimmer M. Coord. Chem. Rev., 2009, 253: 817-826
[68] Pang Y P. Proteins: Struct., Funct., Genet., 2001, 45: 183-189
[69] Peters M B, Yang Y, Wang B, Fuesti-Molnar L, Weaver M N, Merz K M Jr. J. Chem. Theory Comput., 2010, 6: 2935-2947
[70] Lin F, Wang R. J. Chem. Theory Comput., 2010, 6: 1852-1870
[71] Sakharov D V, Lim C. J. Comput. Chem., 2009, 30: 191-202
[72] Wu R, Lu Z, Cao Z, Zhang Y. J. Chem. Theory Comput., 2011, 7: 433-443
[73] Gresh N, Piquemal J P, Krauss M. J. Comput. Chem., 2005, 26: 1113-1130
[74] Zhang Y, Lin H. Theor. Chem. Acc., 2010, 126: 315-322
[75] Zhang Y, Lin H J. Chem. Theory Comput., 2008, 4: 414-425
[76] Pezeshki S, Lin H. J. Chem. Theory Comput., 2011, 7, 3625-3634
[77] Kerdcharoen T, Morokuma K. Chemical Physics Letters, 2002, 355: 257-262
[78] Warshel A, Kato M, Pisliakov A V. J. Chem. Theory Comput., 2007, 3: 2034-2045
[79] Jorgensen W L. J. Chem. Theory Comput., 2007, 3: 1877-1877
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[8] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[9] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[10] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[11] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[12] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[13] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[14] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[15] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.