中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1166-1174 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Non-Condon Effect and Time-Dependent Wave-Packet Method on Electron Transfer

Zhang Weiwei, Zhong Xinxin, Si Yubing, Zhao Yi   

  1. State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 737 ) Cited
Export

EndNote

Ris

BibTeX

Due to the importance of electron transfer in chemistry, material, biology and etc., a variety of theoretical models has been proposed to investigate electron transfer. In the present paper, we summarize the approaches for electron transfer proposed by us, which include the non-Condon electron transfer rate theory based on the Fermi's golden rule and time-dependent wave-packet method for the consideration of the coherence motion of electron. Their potential applications, combining with quantum chemical calculations for the reorganization energy and electronic coupling, have been demonstrated with use of two examples. One is the mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF), and the other is the triplet-triplet energy transfer (TTET) in the fluorene dimer. Contents
1 Introduction
2 Methodologies
2.1 Non-Condon electron transfer rate theory
2.2 Time-dependent wave-packet approach
2.3 Computational approaches for reorganization energy and electronic coupling
3 Numerical tests and applications
3.1 Numerical tests of non-Condon electron transfer rate theory and time-dependent wave-packet approach
3.2 Mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF)
3.3 Triplet-triplet energy transfer (TTET) in fluorene dimer
4 Conclusion

CLC Number: 

[1] Marcus R A. J. Chem. Phys., 1956, 24: 966-978
[2] Marcus R A. Biochim. Biophys. Acta, 1985, 811: 265-322
[3] Marcus R A. Rev. Mod. Phys., 1993, 65: 599-610
[4] Hush N S. Coord. Chem. Rev., 1985, 64: 135-157
[5] Zhao Y, Milnikov G, Nakamura H. J. Chem. Phys., 2004, 121: 8854-8860
[6] Zhao Y, Liang W Z. Phys. Rev. A, 2006, 74: art. no. 032706
[7] Zhu W J, Han M M, Zhao Y. Chinese J. Chem. Phys., 2007, 20: 217-223
[8] Zhu W J, Zhao Y. J. Chem. Phys., 2007, 126: art. no. 184105
[9] Zhang W W, Zhu W J, Liang W Z, Zhao Y, Nelsen S F. J. Phys. Chem. B, 2008, 112: 11079-11086
[10] Zhu W J, Zhao Y. J. Chem. Phys., 2008, 129: art. no. 184111
[11] Nelsen S F, Konradsson A E, Weaver M N, Stephenson R M, Lockard J V, Zink J I, Zhao Y. J. Phys. Chem. B, 2007, 111: 6776-6781
[12] Telo J P, Nelsen S F, Zhao Y. J. Phys. Chem. A, 2009, 113: 7730-7736
[13] Nan G J, Wang L J, Yang X D, Shuai Z G, Zhao Y. J. Chem. Phys., 2009, 130: 024704
[14] Horowitz G, Fichou D, Peng X, Xu Z, Garnier F. Solid State. Commun., 1989, 72: 381-384
[15] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539-541
[16] Zhao Y, Liang W Z. J. Chem. Phys., 2009, 130: art. no. 034111
[17] Zhang W W, Liang W Z, Zhao Y. J. Chem. Phys., 2010, 133: art. no. 024501
[18] Zhang W W, Zhao Y, Liang W Z. Sci. China Chem., 2011, 54: 707-714
[19] Zhong X X, Zhao Y. J. Chem. Phys., 2011, 135: art. no. 134110
[20] Si Y B, Zhong X X, Zhang W W, Zhao Y. Chin. J. Chem. Phys., 2011, 24: 538-546
[21] Skourtis S S, Balabin A I, Kawatsu T, Beratan N D. Proc Natl. Acad. Sci. USA, 2005, 102: 3552-3557
[22] Troisi A, Orlandi G. Phys. Rev. Lett., 2006, 96: art. no. 086601
[23] Wang L J, Li Q K, Shuai Z G, Chen L P, Shi Q. Phys. Chem. Chem. Phys., 2010, 12: 3309-3314
[24] Daizadeh I, Medvedve E S, Stuchebrukhov A A. Proc. Natl. Acad. Sci. USA, 1997, 94: 3703-3708
[25] Medvedve E S, Stuchebrukhov A A. J. Chem. Phys., 1997, 107: 3821-3831
[26] Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp L W, Oxtoby N S, Mas-Torrent M, Cricillers N, Veciana J, Rovira C. Org. Electron., 2008, 9: 1101-1106
[27] Schein L B, Duck C B, McGhie A R. Phys. Rev. Lett., 1978, 40: 197-200
[28] Hannewald K, Bobbert P A. Appl. Phys. Lett., 2004, 85: 1535-1537
[29] Ishizaki A, Tanimura Y. J. Phys. Soc. Jpn., 2005, 74: 3131-3134
[30] Wang D, Chen L, Zheng R, Wang L, Shi Q. J. Chem. Phys., 2010, 132: art. no. 081101
[31] Li X Q, Zhang W K, Cui P, Shao J S, Ma Z S, Yan Y J. Phys. Rev. A, 2004, 69: art. no. 085315
[32] Xu R X, Cui P, Li X Q, Mo Y, Yan Y J. J. Chem. Phys., 2005, 122: art. no. 041103
[33] Li X Q, Luo J Y, Yang Y G, Cui P, Yan Y J. Phys. Rev. B, 2005, 71: art. no. 205304
[34] Li J, Kondov I, Wang H, Thoss M. J. Phys. Chem. C, 2010, 114: 18481-18493
[35] Zhao Y. J. Theor. Comput. Chem., 2008, 7: 869-877
[36] Chu X M, Zhao Y. J. Theor. Comput. Chem., 2009, 8: 1295-1307
[37] Anderson P W, Weiss P R., Rev. Mod. Phys., 1953, 25: 269-276
[38] Kubo R. J. Phys. Soc. Jpn., 1954, 9: 935-944
[39] Haken H, Reineker P. Z. Phys., 1972, 249: 253-268
[40] Goychuk I, Hänggi P. Adv. Phys., 2005, 54: 525-584
[41] Cheng Y C, Silbey R J. Phys. Rev. A, 2004, 69: art. no. 052325
[42] Troisi A. Chem. Soc. Rev., 2011, 40: 2347-2358
[43] Kubo R. Rep. Prog. Phys., 1966, 29: 255-284
[44] Rice S O. Bell Syst. Tech. J., 1944, 23: 282-332
[45] Shinozuka M. J. Acoust. Soc. Am., 1971, 49: 357-368
[46] Billah K Y R, Shinozuka M. Phys. Rev. A, 1990, 42: 7492-7495
[47] Tal-Ezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[48] Leforestier C, Bisseling R H, Cerjan C, Feit M D, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H D, Lipkin N, Roncero O, Kosloff R. J. Comput. Phys., 1991, 94: 59-80.
[49] Matyushov D V. J. Chem. Phys., 2004, 120: 7532-7556
[50] Matyushov D V. Acc. Chem. Res., 2007, 40: 294-301
[51] Nelsen S F, Blackstock S C, Kim Y. J. Am. Chem. Soc., 1987, 109: 677-682
[52] Valeev E F, Coropceanu V, da Silva Filho D, Salman S, Bredas J L. J. Am. Chem. Soc., 2006, 128: 9882-9886
[53] Farazdel A, Dupuis M, Clementi E, Aviram A. J. Am. Chem. Soc., 1990, 112: 4206-4214
[54] Shi B, Gao F, Liang W Z. Chem. Phys., 2012, 394: 56-63
[55] Wu Q, Voorhis T V. J. Chem. Phys., 2006, 125: art. no. 164105
[56] Koopmans T. Physica, 1934, 1: 104-113
[57] Qin H M, Zhong X X, Si Y B, Zhang W W, Zhao Y. J. Phys. Chem. A, 2011, 115: 3116-3121
[58] You Z Q, Shao Y, Hsu C P. Chem. Phys. Lett., 2004, 390: 116-123
[59] You Z Q, Hsu C P, Fleming G R. J. Chem. Phys., 2006, 124: art. no. 044506
[60] Cave R J, Newton M D. Chem. Phys. Lett., 1996, 249: 15-19
[61] Voityuk A A, Rosch N J. J. Chem. Phys., 2002, 117: 5607-5616
[62] You Z Q, Hsu C P. J. Chem. Phys., 2010, 133: art. no. 074105
[63] Makri N, Makarov D E. J. Chem. Phys., 1995, 102: 4600-4610
[64] Wang H, Thoss M. New J. Phys., 2008, 10: art. no. 115005
[65] Weiss U, Wollensak M. Phys. Rev. B, 1988, 37: 2729-2732
[66] Weiss U, Sassetti M, Negele T, Wollensak M. Z. Phys. B, 1991, 84: 471-482
[67] Mak C H, Egger R. Phys. Rev. E, 1994, 49: 1997-2008
[68] Zhao Y, Liang W Z, Nakamura H. J. Phys. Chem. A, 2006, 110: 8204-8212
[69] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian03; Gaussian: Pittsburgh, PA, 2003
[70] Kresse G, Furthmuller J. Comput. Mater. Sci., 1996, 6: 15-50
[71] Zhao Y, Liang W Z. Chem. Soc. Rev., 2012, 41: 1075-1087
[72] Zhang W W, Zhong X X, Zhao Y. J. Phys. Chem. A, to be submitted
[73] Weis J V, Abdelwahed S H, Shukla R, Rathore R, Ratner M A, Wasielewski M R. Science, 2010, 328: 1547-1550
[74] Voityuk A A. J. Phys. Chem. C, 2010, 114: 20236-20239
[75] Egorov S A, Everitt K F, Skinner J L. J. Phys. Chem. A, 1999, 103: 9494-9499
[76] Thoss M, Wang H, Miller W H. J. Chem. Phys., 2001, 115: 2991-3005
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[3] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[4] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[5] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[6] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[7] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[8] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[9] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[10] Xiangmei Liu, Kang Tian, Chengfeng Xue, Yifan Han, Shujuan Liu, Qiang Zhao*. Application of X-Ray Excited Phosphors in Photodynamic Therapy [J]. Progress in Chemistry, 2017, 29(12): 1488-1498.
[11] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[12] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[13] Fan Xiao, Li Yanyan, Liu Yingya, Cao Changsheng, Li Haitao. Application of Single Molecule Fluorescence Techniques on Telomere and Telomerase [J]. Progress in Chemistry, 2014, 26(12): 1987-1996.
[14] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[15] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.